scispace - formally typeset
Search or ask a question

Enhancing thermal conductivity of fluids with nano-particles

01 Jan 1995-Vol. 231, pp 99-105
About: The article was published on 1995-01-01 and is currently open access. It has received 7263 citations till now. The article focuses on the topics: Thermal conductivity & Nanoparticle.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors reviewed the most recently published works on plasmonic nanofluids that exclusively present its preparation methods, thermophysical properties, and applications in solar collectors.

115 citations

Journal ArticleDOI
TL;DR: In this article, the thermal conductivity, viscosity and breakdown voltage of solutions of diamond nanoparticles and multiwalled carbon nanotubes dispersed in mineral insulating oil for electrical transformers were measured using the transient hot wire method.

115 citations

Journal ArticleDOI
TL;DR: In this article, the heat transfer coefficient and friction factor of TiO2 and SiO2 water-based nanofluids flowing in a circular tube under turbulent flow are investigated experimentally under constant heat flux boundary condition.

115 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the conjugate free convection inside a porous square cavity occupied with Ag-MgO hybrid nanofluid using the local thermal non-equilibrium (LTNE) model.
Abstract: Current investigation aims to analyze the conjugate free convection inside a porous square cavity occupied with Ag–MgO hybrid nanofluid using the local thermal non-equilibrium (LTNE) model. Hybrid nanofluids are a novel kind of enhanced working fluids, engineered with enhanced thermo-physical and chemical properties. Two solid walls located between the horizontal bounds in two sides of cavity play the role of a conductive interface between the hot and cold walls, and moreover, the top and bottom bounds have been insulated. The governing differential equations are obtained by Darcy model and then for better representation of the results, converted into a dimensionless form. The finite element method is utilized to solve the governing equations. To evaluate the correctness and accuracy of the results, comparisons have been performed between the outcomes of this work and the previously published results. The results indicate that using the hybrid nanoparticles decreases the flow strength and the heat transfer rate. The heat transfer rate augments when Rk rises and the flow strength augments when Ra grows. Enhancing the porosity increases strongly the size and strength of the vortex composed inside the porous medium. When Kr is low, the heat transfer rate is low and by increasing Kr, thermal fields become closer to each other. The effect of hybrid nanoparticles on thermal fields with the thinner solid walls is more than that the thicker ones. An increment in H eventuates the enhancement of heat transfer and hence, the thermal boundary layer thickness. By increasing the volume fraction of the hybrid nanoparticles, Nuhnf and Nus decrease in constant Ra. Besides, increase in Ra enhances the Nuhnf and Nus. For a certain d, the reduction of Nus due to using the hybrid nanoparticles is more than that for Nuhnf. The increment of d lessens Nuhnf for all values of Kr and has not specific trends for Nus. Utilizing hybrid nanoparticles decreases Nus (except d = 0.4), rises Nus when Kr 42. In constant d, increment of H, respectively, decreases and boosts Nuhnf and Nus. For all values of d, increment of e declines Nuhnf. In low value of d, the increase in e reduces Nus, whereas at higher values, Nus has continuously enhancing trend. For different values of d, the increase in e scrimps Nuhnf. The increment of d and also e, and H are, respectively, decreases and increases the heat transfer rate.

115 citations

Journal ArticleDOI
TL;DR: In this article, Nitrogen-doped graphene (NDG) nanofluids, with varying concentrations of nanoparticles (0.01, 0.04, and 0.06), were prepared using the two-step method in a 0.025-wt% Triton X-100 (as a surfactant) aqueous solution as a base.
Abstract: Nanofluids perform a crucial role in the development of newer technologies ideal for industrial purposes. In this study, Nitrogen-doped graphene (NDG) nanofluids, with varying concentrations of nanoparticles (0.01, 0.02, 0.04, and 0.06 wt%) were prepared using the two-step method in a 0.025 wt% Triton X-100 (as a surfactant) aqueous solution as a base. Stability, zeta potential, thermal conductivity, viscosity, specific heat, and electrical conductivity of nanofluids containing NDG particles were studied. The stability of the nanofluids was investigated by UV–vis over a time span of 6 months and concentrations remain relatively constant while the maximum relative concentration reduction was 20 %. The thermal conductivity of nanofluids was increased with the particle concentration and temperature, while the maximum enhancement was about 36.78 % for a nanoparticle loading of 0.06 wt%. These experimental results compared with some theoretical models including Maxwell and Nan’s models and observed a good agreement between Nan’s model and the experimental results. Study of the rheological properties of NDG nanofluids reveals that it followed the Newtonian behaviors, where viscosity decreased linearly with the rise of temperature. It has been observed that the specific heat of NDG nanofluid reduced gradually with the increase of concentration of nanoparticles and temperature. The electrical conductivity of the NDG nanofluids enhanced significantly due to the dispersion of NDG in the base fluid. This novel type of fluids demonstrates an outstanding potential for use as innovative heat transfer fluids in medium-temperature systems such as solar collectors.

115 citations