scispace - formally typeset
Search or ask a question

Enhancing thermal conductivity of fluids with nano-particles

01 Jan 1995-Vol. 231, pp 99-105
About: The article was published on 1995-01-01 and is currently open access. It has received 7263 citations till now. The article focuses on the topics: Thermal conductivity & Nanoparticle.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the combined effects of variable magnetic field and heat generation/absorption on unsteady flow of non-Newtonian Williamson fluid generated by a stretching cylinder in the presence of nanoparticles were studied.

95 citations

Journal ArticleDOI
TL;DR: In this article, a single-phase flow and heat transfer characteristics through the silicon-based trapezoidal microchannels with a hydraulic diameter of 194.5 µm using Al2O3-H2O nanofluids with particle volume fractions of 0, 0.15% and 0.26% were investigated.
Abstract: Experimental investigations were performed on the single-phase flow and heat transfer characteristics through the silicon-based trapezoidal microchannels with a hydraulic diameter of 194.5 µm using Al2O3-H2O nanofluids with particle volume fractions of 0, 0.15% and 0.26% as the working fluids. The effects of the Reynolds number, Prandtl number and nanoparticle concentration on the pressure drop and convective heat transfer were investigated. Experimental results show that the pressure drop and flow friction of the nanofluids increased slightly when compared with that of the pure water, while the Nusselt number increased considerably. At the same pumping power, using nanofluids instead of pure water caused a reduction in the thermal resistance. It was also found that the Nusselt number increased with the increase in the particle concentration, Reynolds number and Prandtl number. Based on the experimental data, the dimensionless correlations for the flow friction and heat transfer of Al2O3-H2O nanofluids through silicon microchannels were proposed for the first time. The agglomeration and deposition of nanoparticles in the silicon microchannels were also examined in this paper. It was found that the Al2O3 nanoparticles deposited on the inner wall of microchannels more easily with increasing wall temperature, and once boiling commenced, there is a severe deposition and adhesion of nanoparticles to the inner wall, which makes the boiling heat transfer of nanofluids in silicon microchannels questionable.

95 citations

Journal ArticleDOI
TL;DR: In this article, the effects of low Prandtl number nanofluid in a porous medium were investigated by using Galerkin weighted residuals method for free-free boundaries.
Abstract: Thermal instability in a low Prandtl number nanofluid in a porous medium is investigated by using Galerkin weighted residuals method for free-free boundaries. For porous medium, Brinkman-Darcy modelis applied. The model used for the nanofluid describes the effects of Brownian motion and thermophoresis. Linear stability theory based upon normal mode analysis is employed to find the expression for stationary and oscillatory convection. The effects of Prandtlnumber, Darcy number, Lewis number and modified diffusivity ratio on the stationary convection are investigated both analytically and graphically. The results indicated that the Prandtl and Darcy numbers have a destabilizing effect while the Lewis number and modified diffusivity ratio have a stabilizing effect for the stationary convection.

95 citations


Cites background from "Enhancing thermal conductivity of f..."

  • ...INTRODUCTION When a small amount of nano-sized particles are added to the base fluid, the thermal conductivity of the fluid is enhanced and such a fluid is called nanofluid which was first coined by Choi (1995)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the performance of a heat pipe using silver nanoparticles dispersed in DI (De-Ionized) water has been investigated for removing heat from power transistors in electronics and processors in computers.

95 citations

Journal ArticleDOI
TL;DR: In this article, the authors explore the computational solution of the problem addressing the variable viscosity and inclined Lorentz force effects on Williamson nanofluid over a stretching sheet.
Abstract: The present analysis is devoted to explore the computational solution of the problem addressing the variable viscosity and inclined Lorentz force effects on Williamson nanofluid over a stretching sheet. Variable viscosity is assumed to vary as a linear function of temperature. The basic mathematical modelled problem i.e. system of PDE’s is converted nonlinear into ODE’s via applying suitable transformations. Computational solutions of the problem is also achieved via efficient numerical technique shooting. Characteristics of controlling parameters i.e. stretching index, inclined angle, Hartmann number, Weissenberg number, variable viscosity parameter, mixed convention parameter, Brownian motion parameter, Prandtl number, Lewis number, thermophoresis parameter and chemical reactive species on concentration, temperature and velocity gradient. Additionally, friction factor coefficient, Nusselt number and Sherwood number are describe with the help of graphics as well as tables verses flow controlling parameters.

95 citations