scispace - formally typeset
Search or ask a question

Enhancing thermal conductivity of fluids with nano-particles

01 Jan 1995-Vol. 231, pp 99-105
About: The article was published on 1995-01-01 and is currently open access. It has received 7263 citations till now. The article focuses on the topics: Thermal conductivity & Nanoparticle.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors summarized the important published articles on the enhancement of the forced convection heat transfer with nanofluids, including simulations, simulations, and experimental results.

1,738 citations


Cites background from "Enhancing thermal conductivity of f..."

  • ...The seminal work by Choi [2] reported the concept of nanofluids and then the interest in this area has grown....

    [...]

  • ...Choi [2] is the first who used the term nanofluids to refer to the fluid with suspended nanoparticles....

    [...]

Journal ArticleDOI
TL;DR: In this article, a similarity solution is presented which depends on the Prandtl number Pr, Lewis number Le, Brownian motion number Nb and thermophoresis number Nt.

1,565 citations

Journal ArticleDOI
TL;DR: In this article, an experimental work on the convective heat transfer of nanofluids, made of γ-Al2O3 nanoparticles and de-ionized water, flowing through a copper tube in the laminar flow regime was conducted.

1,545 citations

Journal ArticleDOI
TL;DR: In this paper, the authors modified the Maxwell equation for the effective thermal conductivity of solid/liquid suspensions to include the effect of this ordered nanolayer, which has been shown to have a major impact on nanofluid thermal conductivities when the particle diameter is less than 10 nm.
Abstract: Nanofluids, a new class of solid/liquid suspensions, offer scientific challenges because their measured thermal conductivity is one order of magnitude greater than predictions. It has long been known that liquid molecules close to a solid surface form layered solid-like structures, but little is known about the connection between this nanolayer and the thermal properties of the suspensions. Here, we have modified the Maxwell equation for the effective thermal conductivity of solid/liquid suspensions to include the effect of this ordered nanolayer. Because this ordered nanolayer has a major impact on nanofluid thermal conductivity when the particle diameter is less than 10 nm, a new direction is indicated for development of next-generation coolants.

1,523 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the heat transfer behavior of aqueous suspensions of multi-walled carbon nanotubes (CNT nanofluids) flowing through a horizontal tube.

1,334 citations