scispace - formally typeset
Search or ask a question

Enhancing thermal conductivity of fluids with nano-particles

01 Jan 1995-Vol. 231, pp 99-105
About: The article was published on 1995-01-01 and is currently open access. It has received 7263 citations till now. The article focuses on the topics: Thermal conductivity & Nanoparticle.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of nanoparticle volume fraction on the convection heat transfer characteristics and pressure drop of TiO2 (30nm) water nanofluids with nanoparticles volume fraction between 0.002 and 0.02, and Reynolds number between 8000 and 51,000.

168 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the studies on natural convection heat transfer in triangular, trapezoidal, parallelogrammic enclosures and enclosures with curved and wavy walls filled with fluid or porous media is presented.

168 citations

Journal ArticleDOI
TL;DR: In this article, the influence of solid volume fraction of nanoparticles (φ ǫ= 0.02, 0.04), Rayleigh number, Hartmann number, and phase deviation on heat transfer is investigated.
Abstract: In this paper, natural convection heat transfer of Al2O3-Cu/water hybrid nanofluid within open wavy cavity and subjected to a uniform magnetic field is examined by adopting the lattice Boltzmann method scheme. The left wavy wall is heated sinusoidal, while the right wall is open and maintained to the ambient conditions. The top and the bottom horizontal walls are smooth and insulated against heat and mass. The influence of solid volume fraction of nanoparticles (φ = 0, 0.02, 0.04), Rayleigh number (Ra = 103, 104, 105), Hartmann number (Ha = 0, 30, 60, 90) and phase deviation (Φ = 0, π/4, π/2, 3π/4) are investigated on flow and heat transfer fields. The results proved that the Nusselt number decreases with the increase of the Hartmann number, but it increases by the increment of Rayleigh number and nanoparticle volume fraction. The magnetic field rises or falls the effect produced by the presence of nanoparticles with respect to Rayleigh number. At Ra = 103, the effect of the raising phase deviation on heat transfer is erratic while it has a positive role in the improvement of nanoparticles effect at Ra = 105.

168 citations

Journal ArticleDOI
TL;DR: In this article, a compilation of available theoretical correlation related to specific heat of nanofluid has been done on available experimental and theoretical results, which shows that specific heat falls with the enhancement of volume concentration of nanoparticle though there are some inconsistencies among outcomes.
Abstract: Nanofluid is one of the novel inventions of science. Nanofluid can be used for energy savings by increasing the heat transfer performance of the heat recovery systems, which are generally struggling to overcome the present challenging issues such as global warming, greenhouse effect, climate change, and fuel crisis. Specific heat capacity is necessary to analyze energy and exergy performances. This paper extant different characteristic of specific heat capacity of nanofluids containing preparation and measuring methods, effects of volume fraction, temperature, types and sizes of nanoparticles and base fluids. Additionally a compilation has been done on available theoretical correlation related to specific heat of nanofluid. Based on existing experimental and theoretical results, nanofluid specific heat falls with the enhancement of volume concentration of nanoparticle though there are some inconsistencies among outcomes. Moreover, specific heat of the nanofluids are generally increased after adding dispersant in the mixtures. However, many contradictory results about the effects of temperatures on specific heat of nanofluids found in the literatures. Therefore, this review will help the researchers and related peoples to get enough information to select a nanofluid based on specific heat for their practical applications.

167 citations

Journal ArticleDOI
TL;DR: In this paper, the boundary-layer flow of Maxwell nanomaterial saturating a non-Darcy porous medium is characterized by considering the Darcy-Forchheimer based model.

167 citations