Enhancing wireless performance using reflectors
01 May 2017-pp 1-9
TL;DR: OptRe is proposed which optimally places metallic reflectors — providing a highly reflective surface that can reflect impinging signals almost 100% — in indoor environments to reduce the reflection loss and enhance wireless transmissions.
Abstract: Signal decay is the fundamental problem of wireless communications, especially in an indoor environment where line-of-sight (LOS) paths for signal propagation are often blocked and various indoor objects exacerbate signal fading. There are three reasons for signal decay: long transmission distance, signal penetration, and reflection. In this paper, we propose OptRe which optimally places metallic reflectors — providing a highly reflective surface that can reflect impinging signals almost 100% — in indoor environments to reduce the reflection loss and enhance wireless transmissions. It enhances both WiFi signal and low-power IoT devices without changing their configurations or network protocols. To enable OptRe, we first develop an empirical signal propagation model that can accurately estimate the signal strength and adapt itself to the reflectors' location. Using micro-benchmarks, our empirical signal propagation model is shown to be more accurate than the other existing path loss models. We also optimally place reflectors to maximize the worst-case signal coverage within the target indoor areas. Our extensive experimental evaluation results have shown OptRe to enhance signal strength for different types of wireless signals by almost 2x.
Citations
More filters
TL;DR: A new approach to Extended Reality (XR), denoted as iCOPYWAVES, is presented, which seeks to offer naturally low-latency operation and cost effectiveness, overcoming the critical scalability issues faced by existing solutions.
Abstract: In this work, we present a new approach to Extended Reality (XR), denoted as iCOPYWAVES, which seeks to offer naturally low-latency operation and cost effectiveness, overcoming the critical scalability issues faced by existing solutions. Specifically, iCOPYWAVES is enabled by emerging PWEs, a recently proposed technology in wireless communications. Empowered by intelligent metasurfaces, PWEs transform the wave propagation phenomenon into a software-defined process. To this end, we leverage PWEs to: i) create, and then ii) selectively copy the scattered RF wavefront of an object from one location in space to another, where a machine learning module, accelerated by FPGAs, translates it to visual input for an XR headset using PWE-driven, RF imaging principles (XR-RF). This makes an XR system whose operation is bounded in the physical-layer and, hence, has the prospects for minimal end-to-end latency. For the case of large distances, RF-to-fiber/fiber-to-RF is employed to provide intermediate connectivity. The paper provides a tutorial on the iCOPYWAVES system architecture and workflow. Finally, a proof-of-concept implementation via simulations is provided, demonstrating the reconstruction of challenging objects in iCOPYWAVES-produced computer graphics
4 citations
Patent•
30 Jul 2018TL;DR: In this article, a system for controlling an interaction of a surface with an impinging electromagnetic wave is presented, in which each of the controllable elements is configured to adjust its electromagnetic behavior based on a control signal received by the controlled element.
Abstract: A system for controlling an interaction of a surface with an impinging electromagnetic wave is provided. The system comprises a surface comprising a plurality of controllable elements, wherein each of the controllable elements is configured to adjust its electromagnetic behavior based on a control signal received by the controllable element, a sensing unit configured to detect a state of an environment of the surface and/or one or more wave attributes of an electromagnetic wave impinging on the surface, a control unit configured to determine, based on the detected state of the environment and/or the one or more wave attributes, a control state of the controllable elements, in which the electromagnetic behavior of the controllable elements is adjusted such that the surface interacts with the impinging electromagnetic wave in a predefined manner, and an adjusting unit configured to determine.
2 citations
TL;DR: In this paper , a new approach to Extended Reality (XR), denoted as iCOPYWAVES, is presented, which seeks to offer naturally low-latency operation and cost-effectiveness, overcoming the critical scalability issues faced by existing solutions.
Abstract: We present a new approach to Extended Reality (XR), denoted as iCOPYWAVES, which seeks to offer naturally low-latency operation and cost-effectiveness, overcoming the critical scalability issues faced by existing solutions. iCOPYWAVES is enabled by emerging PWEs, a recently proposed technology in wireless communications. Empowered by intelligent (meta)surfaces, PWEs transform the wave propagation phenomenon into a software-defined process. We leverage PWEs to i) create, and then ii) selectively copy the scattered RF wavefront of an object from one location in space to another, where a machine learning module, accelerated by FPGAs, translates it to visual input for an XR headset using PWEdriven, RF imaging principles (XR-RF). This makes for an XR system whose operation is bounded in the physical layer and, hence, has the prospects for minimal end-to-end latency. Over large distances, RF-to-fiber/fiber-to-RF is employed to provide intermediate connectivity. The paper provides a tutorial on the iCOPYWAVES system architecture and workflow. A proof-of-concept implementation via simulations is provided, demonstrating the reconstruction of challenging objects in iCOPYWAVES produced computer graphics.
1 citations
06 Jun 2021
TL;DR: In this article, a simple backscatter radio tag offers copies of the hidden RF source, relayed in space and shifted in frequency, while requiring minimal time-synchronisation, exploiting a small number of simple, ultra-low-cost backscattering tags.
Abstract: Conventional direction of arrival (DoA) techniques employ multi-antenna receivers with increased complexity and cost. This work emulates a multi-antenna system using a singleantenna receiver and exploiting the beauty and simplicity of backscatter radio. More specifically, a number of simple backscatter radio tags offer copies of the hidden RF source, relayed in space and shifted in frequency, while requiring minimal time-synchronisation. DoA of a hidden RF source was estimated with an error of less than 5 degrees, exploiting a small number of simple, ultra-low-cost backscattering tags.
1 citations
29 Aug 2020
TL;DR: The integration of two corner reflector configurations to Access Point was shown to successfully weaken signals and 100% of TCP throughput while strengthening signals by up to 6 dB and 40% of tcp throughput for respective intended regions.
Abstract: Careful control of indoor wireless coverage is crucial to ensure better signal reception at user-end, mitigate interference to other adjacent wireless systems plus reduce possibility of signal reception by unintended users. Existing solutions are either costly or difficult to configure. This paper presents empirical IEEE802.11 indoor coverage and Transmission Control Protocol (TCP) throughput analysis for WLAN Access Point with corner reflector. The integration of two corner reflector configurations to Access Point was shown to successfully weaken signals by up to 19 dB and 100% of TCP throughput while strengthening signals by up to 6 dB and 40% of TCP throughput for respective intended regions. The results demonstrate potential application of corner reflector to customize indoor coverage and regulate reliable internet connectivity of Access Point.
1 citations
Cites background from "Enhancing wireless performance usin..."
...Research work in [9] propose placing several metal plates that may enhance wireless performance but involve a considerable environment changes....
[...]
References
More filters
Proceedings Article•
01 Jan 2005
TL;DR: This book aims to provide a chronology of key events and individuals involved in the development of microelectronics technology over the past 50 years and some of the individuals involved have been identified and named.
Abstract: Alhussein Abouzeid Rensselaer Polytechnic Institute Raviraj Adve University of Toronto Dharma Agrawal University of Cincinnati Walid Ahmed Tyco M/A-COM Sonia Aissa University of Quebec, INRSEMT Huseyin Arslan University of South Florida Nallanathan Arumugam National University of Singapore Saewoong Bahk Seoul National University Claus Bauer Dolby Laboratories Brahim Bensaou Hong Kong University of Science and Technology Rick Blum Lehigh University Michael Buehrer Virginia Tech Antonio Capone Politecnico di Milano Javier Gómez Castellanos National University of Mexico Claude Castelluccia INRIA Henry Chan The Hong Kong Polytechnic University Ajit Chaturvedi Indian Institute of Technology Kanpur Jyh-Cheng Chen National Tsing Hua University Yong Huat Chew Institute for Infocomm Research Tricia Chigan Michigan Tech Dong-Ho Cho Korea Advanced Institute of Science and Tech. Jinho Choi University of New South Wales Carlos Cordeiro Philips Research USA Laurie Cuthbert Queen Mary University of London Arek Dadej University of South Australia Sajal Das University of Texas at Arlington Franco Davoli DIST University of Genoa Xiaodai Dong, University of Alberta Hassan El-sallabi Helsinki University of Technology Ozgur Ercetin Sabanci University Elza Erkip Polytechnic University Romano Fantacci University of Florence Frank Fitzek Aalborg University Mario Freire University of Beira Interior Vincent Gaudet University of Alberta Jairo Gutierrez University of Auckland Michael Hadjitheodosiou University of Maryland Zhu Han University of Maryland College Park Christian Hartmann Technische Universitat Munchen Hossam Hassanein Queen's University Soong Boon Hee Nanyang Technological University Paul Ho Simon Fraser University Antonio Iera University "Mediterranea" of Reggio Calabria Markku Juntti University of Oulu Stefan Kaiser DoCoMo Euro-Labs Nei Kato Tohoku University Dongkyun Kim Kyungpook National University Ryuji Kohno Yokohama National University Bhaskar Krishnamachari University of Southern California Giridhar Krishnamurthy Indian Institute of Technology Madras Lutz Lampe University of British Columbia Bjorn Landfeldt The University of Sydney Peter Langendoerfer IHP Microelectronics Technologies Eddie Law Ryerson University in Toronto
7,826 citations
Book•
01 Jan 1993TL;DR: In this paper, the Lagrangian relaxation and dual ascent tree search were used to solve the graph bisection problem and the graph partition problem, and the traveling salesman problem scheduling problems.
Abstract: Part 1 Introduction: combinatorial problems local and global optima heuristics. Part 2 Simulated annealing: the basic method enhancements and modifications applications conclusions. Part 3 Tabu search: the tabu framework broader aspects of intensification and diversification tabu search applications connections and conclusions. Part 4 Genetic algorithms: basic concepts a simple example extensions and modifications applications conclusions. Part 5 Artificial neural networks: neural networks combinatorial optimization problems the graph bisection problem the graph partition problem the travelling salesman problem scheduling problems deformable templates inequality constraints, the Knapsack problem summary. Part 6 Lagrangian relaxation: overview basic methodology Lagrangian heuristics and problem reduction determination of Lagrange multipliers dual ascent tree search applications conclusions. Part 7 Evaluation of heuristic performance: analytical methods empirical testing statistical inference conclusions.
2,571 citations
"Enhancing wireless performance usin..." refers methods in this paper
...SA is used to search for the optimal solution based on the way that a metal cools down to the optimal state (the annealing process from an initial temperature T to minimal Tmin at a certain cooling rate) [17]....
[...]
01 Jan 1993
TL;DR: The principles of radio propagation in indoor environments are reviewed, the channel is modeled as a linear time-varying filter at each location in the three-dimensional space, and the properties of the filter's impulse response are described.
1,735 citations
"Enhancing wireless performance usin..." refers background in this paper
...Indoor radio propagation has been an active subject of research [6], [7]....
[...]
01 Jul 1993
TL;DR: In this paper, a tutorial survey of radio propagation in indoor environments is presented, where the channel is modeled as a linear time-varying filter at each location in the 3D space, and the properties of the filter's impulse response are described.
Abstract: In this tutorial survey the principles of radio propagation in indoor environments are reviewed. The channel is modeled as a linear time-varying filter at each location in the three-dimensional space, and the properties of the filter's impulse response are described. Theoretical distributions of the sequences of arrival times, amplitudes and phases are presented. Other relevant concepts such as spatial and temporal variations of the channel, large-scale path losses, mean excess delay and RMS delay spread are explored. Propagation characteristics of the indoor and outdoor channels are compared and their major differences are outlined. Previous measurement and modeling efforts are surveyed, and areas for future research are suggested. >
1,696 citations