scispace - formally typeset
Open AccessJournal ArticleDOI

Entanglement detection

Reads0
Chats0
TLDR
In this article, the basic elements of entanglement theory for two or more particles and verification procedures, such as Bell inequalities, entangle witnesses, and spin squeezing inequalities, are discussed.
Abstract
How can one prove that a given state is entangled? In this paper we review different methods that have been proposed for entanglement detection. We first explain the basic elements of entanglement theory for two or more particles and then entanglement verification procedures such as Bell inequalities, entanglement witnesses, the determination of nonlinear properties of a quantum state via measurements on several copies, and spin squeezing inequalities. An emphasis is given on the theory and application of entanglement witnesses. We also discuss several experiments, where some of the presented methods have been implemented.

read more

Citations
More filters
Journal ArticleDOI

Multiphoton entanglement and interferometry

TL;DR: A review of the progress in photonic quantum information processing can be found in this article, where the emphasis is given to the creation of photonic entanglement of various forms, tests of the completeness of quantum mechanics (in particular, violations of local realism), quantum information protocols for quantum communication, and quantum computation with linear optics.
Journal ArticleDOI

Measuring entanglement entropy in a quantum many-body system

TL;DR: Making use of the single-site-resolved control of ultracold bosonic atoms in optical lattices, two identical copies of a many-body state are prepared and interfered to directly measure quantum purity, Rényi entanglement entropy, and mutual information.
Journal ArticleDOI

Quantum resource theories

TL;DR: This paper introduced a new development in theoretical quantum physics, the ''resource-theoretic'' point of view, which aims to be closely linked to experiment, and to state exactly what result you can hope to achieve for what expenditure of effort in the laboratory.
Journal ArticleDOI

Quantum metrology with nonclassical states of atomic ensembles

TL;DR: In this article, the authors review and illustrate the theory and experiments with atomic ensembles that have demonstrated many-particle entanglement and quantum-enhanced metrology.
Journal ArticleDOI

Quantum Entanglement of High Angular Momenta

TL;DR: A method for converting the polarization state of photons into information encoded into spatial modes of a single photon is presented and entanglement of very high OAM can improve the sensitivity of angular resolution in remote sensing.
References
More filters
Book

Quantum Computation and Quantum Information

TL;DR: In this article, the quantum Fourier transform and its application in quantum information theory is discussed, and distance measures for quantum information are defined. And quantum error-correction and entropy and information are discussed.
Journal ArticleDOI

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

TL;DR: Consideration of the problem of making predictions concerning a system on the basis of measurements made on another system that had previously interacted with it leads to the result that one is led to conclude that the description of reality as given by a wave function is not complete.
Journal ArticleDOI

Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels

TL;DR: An unknown quantum state \ensuremath{\Vert}\ensure Math{\varphi}〉 can be disassembled into, then later reconstructed from, purely classical information and purely nonclassical Einstein-Podolsky-Rosen (EPR) correlations.
Journal ArticleDOI

On the Einstein-Podolsky-Rosen paradox

TL;DR: In this article, it was shown that even without such a separability or locality requirement, no hidden variable interpretation of quantum mechanics is possible and that such an interpretation has a grossly nonlocal structure, which is characteristic of any such theory which reproduces exactly the quantum mechanical predictions.
Journal ArticleDOI

Quantum cryptography based on Bell's theorem.

TL;DR: Practical application of the generalized Bells theorem in the so-called key distribution process in cryptography is reported, based on the Bohms version of the Einstein-Podolsky-Rosen gedanken experiment andBells theorem is used to test for eavesdropping.
Related Papers (5)