scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Entanglement entropy of non-Hermitian free fermions.

10 Sep 2021-Journal of Physics: Condensed Matter (IOP Publishing)-Vol. 33, Iss: 47, pp 475502
TL;DR: In this paper, the authors study the entanglement properties of non-Hermitian free fermionic models with translation symmetry using the correlation matrix technique and show that the entagglement entropy has a logarithmic correction to the area law in both one-dimensional and two-dimensional systems.
Abstract: We study the entanglement properties of non-Hermitian free fermionic models with translation symmetry using the correlation matrix technique. Our results show that the entanglement entropy has a logarithmic correction to the area law in both one-dimensional and two-dimensional systems. For any one-dimensional one-band system, we prove that each Fermi point of the system contributes exactly 1/2 to the coefficientcof the logarithmic correction. Moreover, this relation betweencand Fermi point is verified for more general one-dimensional and two-dimensional cases by numerical calculations and finite-size scaling analysis. In addition, we also study the single-particle and density-density correlation functions.
Citations
More filters
Posted Content
TL;DR: The entanglement spectrum is a useful tool to study topological phases of matter, and contains valuable information about the ground state of the system as discussed by the authors, which is very similar to Hermitian systems in the latter case.
Abstract: The entanglement spectrum is a useful tool to study topological phases of matter, and contains valuable information about the ground state of the system. Here, we study its properties for free non-Hermitian systems for both point-gapped and line-gapped phases. While the entanglement spectrum only retains part of the topological information in the former case, it is very similar to Hermitian systems in the latter. In particular, it not only mimics the topological edge modes, but also contains all the information about the polarization, even in systems that are not topological. Furthermore, we show that the Wilson loop is equivalent to the many-body polarization and that it reproduces the phase diagram for the system with open boundaries, despite being computed for a periodic system.

7 citations

Posted Content
TL;DR: In this paper, the authors study many-body "steady states" that arise in the non-Hermitian generalisation of the noninteracting Su-Schrieffer-Heeger model at a finite density of fermions.
Abstract: In this work we study many-body 'steady states' that arise in the non-Hermitian generalisation of the non-interacting Su-Schrieffer-Heeger model at a finite density of fermions. We find that the hitherto known phase diagrams for this system, derived from the single-particle gap closings, in fact correspond to distinct non-equilibrium phases, which either carry finite currents or are dynamical insulators where particles are entrapped. Each of these have distinct quasi-particle excitations and steady state correlations and entanglement properties. Looking at finite-sized systems, we further modulate the boundary to uncover the topological features in such steady states -- in particular the emergence of leaky boundary modes. Using a variety of analytical and numerical methods we develop a theoretical understanding of the various phases and their transitions, and uncover the rich interplay of non-equilibrium many-body physics, quantum entanglement and topology in a simple looking, yet a rich model system.

3 citations

References
More filters
Journal ArticleDOI
TL;DR: It is argued that the entanglement entropy in d + 1 dimensional conformal field theories can be obtained from the area of d dimensional minimal surfaces in AdS(d+2), analogous to the Bekenstein-Hawking formula for black hole entropy.
Abstract: A holographic derivation of the entanglement entropy in quantum (conformal) field theories is proposed from anti-de Sitter/conformal field theory (AdS/CFT) correspondence. We argue that the entanglement entropy in d + 1 dimensional conformal field theories can be obtained from the area of d dimensional minimal surfaces in AdS(d+2), analogous to the Bekenstein-Hawking formula for black hole entropy. We show that our proposal agrees perfectly with the entanglement entropy in 2D CFT when applied to AdS(3). We also compare the entropy computed in AdS(5)XS(5) with that of the free N=4 super Yang-Mills theory.

4,395 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report the first observation of the behaviour of a PT optical coupled system that judiciously involves a complex index potential, and observe both spontaneous PT symmetry breaking and power oscillations violating left-right symmetry.
Abstract: One of the fundamental axioms of quantum mechanics is associated with the Hermiticity of physical observables 1 . In the case of the Hamiltonian operator, this requirement not only implies real eigenenergies but also guarantees probability conservation. Interestingly, a wide class of non-Hermitian Hamiltonians can still show entirely real spectra. Among these are Hamiltonians respecting parity‐time (PT) symmetry 2‐7 . Even though the Hermiticity of quantum observables was never in doubt, such concepts have motivated discussions on several fronts in physics, including quantum field theories 8 , nonHermitian Anderson models 9 and open quantum systems 10,11 , to mention a few. Although the impact of PT symmetry in these fields is still debated, it has been recently realized that optics can provide a fertile ground where PT-related notions can be implemented and experimentally investigated 12‐15 . In this letter we report the first observation of the behaviour of a PT optical coupled system that judiciously involves a complex index potential. We observe both spontaneous PT symmetry breaking and power oscillations violating left‐right symmetry. Our results may pave the way towards a new class of PT-synthetic materials with intriguing and unexpected properties that rely on non-reciprocal light propagation and tailored transverse energy flow. Before we introduce the concept of spacetime reflection in optics, we first briefly outline some of the basic aspects of this symmetry within the context of quantum mechanics. In general, a Hamiltonian HD p 2 =2mCV(x

3,097 citations

Journal ArticleDOI
TL;DR: In this article, the properties of entanglement in many-body systems are reviewed and both bipartite and multipartite entanglements are considered, and the zero and finite temperature properties of entangled states in interacting spin, fermion and boson model systems are discussed.
Abstract: Recent interest in aspects common to quantum information and condensed matter has prompted a flurry of activity at the border of these disciplines that were far distant until a few years ago. Numerous interesting questions have been addressed so far. Here an important part of this field, the properties of the entanglement in many-body systems, are reviewed. The zero and finite temperature properties of entanglement in interacting spin, fermion, and boson model systems are discussed. Both bipartite and multipartite entanglement will be considered. In equilibrium entanglement is shown tightly connected to the characteristics of the phase diagram. The behavior of entanglement can be related, via certain witnesses, to thermodynamic quantities thus offering interesting possibilities for an experimental test. Out of equilibrium entangled states are generated and manipulated by means of many-body Hamiltonians.

3,096 citations

Journal ArticleDOI
TL;DR: In this article, a systematic study of entanglement entropy in relativistic quantum field theory is carried out, where the von Neumann entropy is defined as the reduced density matrix ρA of a subsystem A of a 1+1-dimensional critical system, whose continuum limit is a conformal field theory with central charge c, and the results are verified for a free massive field theory.
Abstract: We carry out a systematic study of entanglement entropy in relativistic quantum field theory. This is defined as the von Neumann entropy SA = −Tr ρAlogρA corresponding to the reduced density matrix ρA of a subsystem A. For the case of a 1+1-dimensional critical system, whose continuum limit is a conformal field theory with central charge c, we re-derive the result of Holzhey et al when A is a finite interval of length in an infinite system, and extend it to many other cases: finite systems, finite temperatures, and when A consists of an arbitrary number of disjoint intervals. For such a system away from its critical point, when the correlation length ξ is large but finite, we show that , where is the number of boundary points of A. These results are verified for a free massive field theory, which is also used to confirm a scaling ansatz for the case of finite size off-critical systems, and for integrable lattice models, such as the Ising and XXZ models, which are solvable by corner transfer matrix methods. Finally the free field results are extended to higher dimensions, and used to motivate a scaling form for the singular part of the entanglement entropy near a quantum phase transition.

3,029 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the theoretical models that have been developed to describe the physics of polyacetylene and related conducting polymers and summarize the relevant experimental results obtained for these materials.
Abstract: Self-localized nonlinear excitations (solitons, polarons, and bipolarons) are fundamental and inherent features of quasi-one-dimensional conducting polymers. Their signatures are evident in many aspects of the physical and chemical properties of this growing class of novel materials. As a result, these polymers represent an opportunity for exploring the novel phenomena associated with topological solitons and their linear confinement which results from weakly lifting the ground-state degeneracy. The authors review the theoretical models that have been developed to describe the physics of polyacetylene and related conducting polymers and summarize the relevant experimental results obtained for these materials. An attempt is made to assess the validity of the soliton model of polyacetylene and its generalization to related systems in which the ground-state degeneracy has been lifted.

2,907 citations