scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Entropy and dynamics of water in hydration layers of a bilayer.

07 Nov 2010-Journal of Chemical Physics (American Institute of Physics)-Vol. 133, Iss: 17, pp 174704-174704
TL;DR: The translational diffusion of water in the vicinity of the head groups is found to be in a subdiffusive regime and the rotational diffusion constant increases going away from the interface, supported by the slower reorientational relaxation of the dipole vector and OH bond vector of interfacial water.
Abstract: We compute the entropy and transport properties of water in the hydration layer of dipalmitoylphosphatidylcholine bilayer by using a recently developed theoretical scheme [two-phase thermodynamic model, termed as 2PT method; S.-T. Lin et al., J. Chem. Phys. 119, 11792 (2003)] based on the translational and rotational velocity autocorrelation functions and their power spectra. The weights of translational and rotational power spectra shift from higher to lower frequency as one goes from the bilayer interface to the bulk. Water molecules near the bilayer head groups have substantially lower entropy (48.36 J/mol/K) than water molecules in the intermediate region (51.36 J/mol/K), which have again lower entropy than the molecules (60.52 J/mol/K) in bulk. Thus, the entropic contribution to the free energy change (TΔS) of transferring an interface water molecule to the bulk is 3.65 kJ/mol and of transferring intermediate water to the bulk is 2.75 kJ/mol at 300 K, which is to be compared with 6.03 kJ/mol for melting of ice at 273 K. The translational diffusion of water in the vicinity of the head groups is found to be in a subdiffusive regime and the rotational diffusion constant increases going away from the interface. This behavior is supported by the slower reorientational relaxation of the dipole vector and OH bond vector of interfacial water. The ratio of reorientational relaxation time for Legendre polynomials of order 1 and 2 is approximately 2 for interface, intermediate, and bulk water, indicating the presence of jump dynamics in these water molecules.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the potential of mean force (PMF) of graphene oxide (GO) is calculated for both oxidized and reduced parts, with interplanar distance as reaction coordinate in helium and water.
Abstract: The layers of graphene oxide (GO) are found to be good for permeation of water but not for helium (Science 2012 335 (6067): 442-444) suggesting that the GO layers are dynamic in the formation of permeation route depending on the environment they are in (i.e, water or helium). To probe the microscopic origin of this observation we calculate the potential of mean force (PMF) of GO sheets (oxidized and reduced parts), with inter-planar distance as reaction coordinate in helium and water. Our PMF calculation shows that equilibrium interlayer distance between oxidized part of GO sheets in helium is at 4.8 A leaving no space for helium permeation. In contrast PMF of oxidized part of GO in water shows two minima one at 4.8 A and another at 6.8 A corresponding to no water and water filled region and thus giving rise to permeation path. The increased electrostatic interaction between water with the oxidized part of the sheet helps the sheet opening up and pushing water inside. Based on the entropy calculations for water trapped between graphene sheets and oxidized graphene sheets at different inter-sheet spacing we also show the thermodynamics of filling.

50 citations

Journal ArticleDOI
TL;DR: The 2PT determined excess Gibbs free energies of Lennard-Jones (LJ) mixtures over a wide range of conditions are examined, suggesting that the 2PT method can be a powerful method for understanding thermodynamic properties in more complicated multicomponent systems.
Abstract: The two-phase thermodynamic (2PT) model is generalized to determine the thermodynamic properties of mixtures. In this method, the vibrational density of states (DoS), obtained from the Fourier transform of the velocity autocorrelation function, and quantum statistics are combined to determine the entropy and free energy from the trajectory of a molecular dynamics simulation. In particular, the calculated DoS is decomposed into a solid-like and a gas-like component through the fluidicity parameter, allowing for treatments for the anharmonic effects in fluids. The 2PT method has been shown to provide reliable thermodynamic properties of pure substances over the whole phase diagram with only about a 20 ps MD trajectory. Here we show how the 2PT method can be used for mixtures with the same degree of accuracy and efficiency. We have examined the 2PT determined excess Gibbs free energies of Lennard-Jones (LJ) mixtures over a wide range of conditions (1 ≤ T* ≤ 3, 0.5 ≤ P* ≤ 2.5, 1 ≤ σBB/σAA ≤ 2, and 1 ≤ eBB/eAA ≤ 2), including the change of the off-diagonal LJ interactions. The 2PT determined values are in good agreement with those from Widom insertion or thermodynamic integration (TI). Our results suggest that the 2PT method can be a powerful method for understanding thermodynamic properties in more complicated multicomponent systems.

42 citations

Journal ArticleDOI
TL;DR: Results show that pairwise entropies of local hydration layers, calculated from regional radial distribution functions, scale logarithmically withLocal hydration dynamics, which raises the question of whether this may be a general principle for understanding the structure-dynamics of biomolecular solvation.
Abstract: The enzyme Candida Antarctica lipase B (CALB) serves here as a model for understanding connections among hydration layer dynamics, solvation shell structure, and protein surface structure. The structure and dynamics of water molecules in the hydration layer were characterized for regions of the CALB surface, divided around each α-helix, β-sheet, and loop structure. Heterogeneous hydration dynamics were observed around the surface of the enzyme, in line with spectroscopic observations of other proteins. Regional differences in the structure of the biomolecular hydration layer were found to be concomitant with variations in dynamics. In particular, it was seen that regions of higher density exhibit faster water dynamics. This is analogous to the behavior of bulk water, where dynamics (diffusion coefficients) are connected to water structure (density and tetrahedrality) by excess (or pair) entropy, detailed in the Rosenfeld scaling relationship. Additionally, effects of protein surface topology and hydrophobicity on water structure and dynamics were evaluated using multiregression analysis, showing that topology has a somewhat larger effect on hydration layer structure-dynamics. Concave and hydrophobic protein surfaces favor a less dense and more tetrahedral solvation layer, akin to a more ice-like structure, with slower dynamics. Results show that pairwise entropies of local hydration layers, calculated from regional radial distribution functions, scale logarithmically with local hydration dynamics. Thus, the Rosenfeld relationship describes the heterogeneous structure-dynamics of the hydration layer around the enzyme CALB. These findings raise the question of whether this may be a general principle for understanding the structure-dynamics of biomolecular solvation.

41 citations

Journal ArticleDOI
30 Sep 2013-ACS Nano
TL;DR: It was shown that such nontrivial dynamics of water in an "alien" environment is driven by the dynamic heterogeneities of the local bilayer structure and the formation of transient atomic-scale "defects" in it.
Abstract: The atomic-scale diffusion of water in the presence of several lipid bilayers mimicking biomembranes is characterized via unconstrained molecular dynamics (MD) simulations. Although the overall water dynamics corresponds well to literature data, namely, the efficient braking near polar head groups of lipids, a number of interesting and biologically relevant details observed in this work have not been sufficiently discussed so far; for instance, the fact that waters “sense” the membrane unexpectedly early, before water density begins to decrease. In this “transitional zone” the velocity distributions of water and their H-bonding patterns deviate from those in the bulk solution. The boundaries of this zone are well preserved even despite the local (<1 nm size) perturbation of the lipid bilayer, thus indicating a decoupling of the surface and bulk dynamics of water. This is in excellent agreement with recent experimental data. Near the membrane surface, water movement becomes anisotropic, that is, solvent mo...

37 citations


Cites background or methods from "Entropy and dynamics of water in hy..."

  • ...16 Such a classification is often made based on the degree of mobility of water, which is measured by NMR, ESR, and IR methods, electrical conductivity measurements, and incoherent neutron scattering(11,15,17,18) or calculated via molecular dynamics (MD) simulations.(11,13,16,19,20)...

    [...]

  • ...Water molecules involved in the building and maintenance of cell membranes exhibit very different properties depending on their location with respect to the lipid bilayer and, therefore, on their interactions with neighboring molecules.(8,11) Thus, water's translational diffusivity inmembranes drastically changes across the depth of the lipid bilayers....

    [...]

Journal ArticleDOI
TL;DR: For the first time, the mechanism of water insertion deep inside the lipid bilayer has been proposed and Structural characteristics at the bilayer-water interface region are reported.
Abstract: Molecular dynamics simulation was performed on the 1,2-dipalmitoyl-sn-phosphocholine (DPPC) bilayer−water system using the GROMOS96 53a6 united atom force field. The transferability of force field was tested by reproducing the area per lipid within 3% accuracy from the experimental value. The simulation shows that water can penetrate much deeper inside the bilayer almost up to the starting point of the aliphatic chain. There is significant evidence from experiments that water goes deep in the DPPC bilayer, but it has not been reported from theoretical work. The mechanism of insertion of water deep inside the lipid bilayer is still not clear. In this report, for the first time, the mechanism of water insertion deep into the bilayer has been proposed. Water transport occurs by the headgroup and its first solvation shell. The trimethyl ammonium (NMe3) group (headgroup of DPPC) has two stable conformations at the bilayer−water interface, one outside the bilayer and another inside it. The NMe3 group has a larg...

36 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a method is described to realize coupling to an external bath with constant temperature or pressure with adjustable time constants for the coupling, which can be easily extendable to other variables and to gradients, and can be applied also to polyatomic molecules involving internal constraints.
Abstract: In molecular dynamics (MD) simulations the need often arises to maintain such parameters as temperature or pressure rather than energy and volume, or to impose gradients for studying transport properties in nonequilibrium MD A method is described to realize coupling to an external bath with constant temperature or pressure with adjustable time constants for the coupling The method is easily extendable to other variables and to gradients, and can be applied also to polyatomic molecules involving internal constraints The influence of coupling time constants on dynamical variables is evaluated A leap‐frog algorithm is presented for the general case involving constraints with coupling to both a constant temperature and a constant pressure bath

25,256 citations

Journal ArticleDOI
TL;DR: A parallel message-passing implementation of a molecular dynamics program that is useful for bio(macro)molecules in aqueous environment is described and can handle rectangular periodic boundary conditions with temperature and pressure scaling.

8,195 citations

Journal ArticleDOI
TL;DR: The design includes an extraction of virial and periodic boundary conditions from the loops over pairwise interactions, and special software routines to enable rapid calculation of x–1/2.
Abstract: GROMACS 3.0 is the latest release of a versatile and very well optimized package for molecular simulation. Much effort has been devoted to achieving extremely high performance on both workstations and parallel computers. The design includes an extraction of virial and periodic boundary conditions from the loops over pairwise interactions, and special software routines to enable rapid calculation of x–1/2. Inner loops are generated automatically in C or Fortran at compile time, with optimizations adapted to each architecture. Assembly loops using SSE and 3DNow! Multimedia instructions are provided for x86 processors, resulting in exceptional performance on inexpensive PC workstations. The interface is simple and easy to use (no scripting language), based on standard command line arguments with self-explanatory functionality and integrated documentation. All binary files are independent of hardware endian and can be read by versions of GROMACS compiled using different floating-point precision. A large collection of flexible tools for trajectory analysis is included, with output in the form of finished Xmgr/Grace graphs. A basic trajectory viewer is included, and several external visualization tools can read the GROMACS trajectory format. Starting with version 3.0, GROMACS is available under the GNU General Public License from http://www.gromacs.org.

6,375 citations

Book ChapterDOI
01 Jan 1981
TL;DR: In this article, a three-point charge model (on hydrogen and oxygen positions) with a Lennard-Jones 6-12 potential on the oxygen positions only was developed, and parameters for the model were determined from 12 molecular dynamics runs covering the two-dimensional parameter space of charge and oxygen repulsion.
Abstract: For molecular dynamics simulations of hydrated proteins a simple yet reliable model for the intermolecular potential for water is required. Such a model must be an effective pair potential valid for liquid densities that takes average many-body interactions into account. We have developed a three-point charge model (on hydrogen and oxygen positions) with a Lennard-Jones 6–12 potential on the oxygen positions only. Parameters for the model were determined from 12 molecular dynamics runs covering the two-dimensional parameter space of charge and oxygen repulsion. Both potential energy and pressure were required to coincide with experimental values. The model has very satisfactory properties, is easily incorporated into protein-water potentials, and requires only 0.25 sec computertime per dynamics step (for 216 molecules) on a CRAY-1 computer.

5,336 citations

Journal ArticleDOI
TL;DR: The first and second papers in this series, which make it possible to interpret entropy data in terms of a physical picture, are applied to binary solutions, and equations are derived relating energy and volume changes when a solution is formed to the entropy change for the process as discussed by the authors.
Abstract: The ideas of the first and second papers in this series, which make it possible to interpret entropy data in terms of a physical picture, are applied to binary solutions, and equations are derived relating energy and volume changes when a solution is formed to the entropy change for the process. These equations are tested against data obtained by various authors on mixtures of normal liquids, and on solutions of non‐polar gases in normal solvents. Good general agreement is found, and it is concluded that in such solutions the physical picture of molecules moving in a ``normal'' manner in each others' force fields is adequate. As would be expected, permanent gases, when dissolved in normal liquids, loosen the forces on neighboring solvent molecules producing a solvent reaction which increases the partial molal entropy of the solute.Entropies of vaporization from aqueous solutions diverge strikingly from the normal behavior established for non‐aqueous solutions. The nature of the deviations found for non‐polar solutes in water, together with the large effect of temperature upon them, leads to the idea that the water forms frozen patches or microscopic icebergs around such solute molecules, the extent of the iceberg increasing with the size of the solute molecule. Such icebergs are apparently formed also about the non‐polar parts of the molecules of polar substances such as alcohols and amines dissolved in water, in agreement with Butler's observation that the increasing insolubility of large non‐polar molecules is an entropy effect. The entropies of hydration of ions are discussed from the same point of view, and the conclusion is reached that ions, to an extent which depends on their sizes and charges, may cause a breaking down of water structure as well as a freezing or saturation of the water nearest them. Various phenomena recorded in the literature are interpreted in these terms. The influence of temperature on certain salting‐out coefficients is interpreted in terms of entropy changes. It appears that the salting‐out phenomenon is at least partly a structural effect. It is suggested that structural influences modify the distribution of ions in an electrolytesolution, and reasons are given for postulating the existence of a super‐lattice structure in solutions of LaCl3 and of EuCl3. An example is given of a possible additional influence of structural factors upon reacting tendencies in aqueous solutions.

2,572 citations