scispace - formally typeset
Journal ArticleDOI

Environmental and physical controls on northern terrestrial methane emissions across permafrost zones

Reads0
Chats0
TLDR
Future changes to terrestrial high-latitude CH4 emissions will be more proximately related to changes in moisture, soil temperature, and vegetation composition than to increased availability of organic matter following permafrost thaw.
Abstract
Methane (CH4) emissions from the northern high-latitude region represent potentially significant biogeochemical feedbacks to the climate system. We compiled a database of growing-season CH4 emissions from terrestrial ecosystems located across permafrost zones, including 303 sites described in 65 studies. Data on environmental and physical variables, including permafrost conditions, were used to assess controls on CH4 emissions. Water table position, soil temperature, and vegetation composition strongly influenced emissions and had interacting effects. Sites with a dense sedge cover had higher emissions than other sites at comparable water table positions, and this was an effect that was more pronounced at low soil temperatures. Sensitivity analysis suggested that CH4 emissions from ecosystems where the water table on average is at or above the soil surface (wet tundra, fen underlain by permafrost, and littoral ecosystems) are more sensitive to variability in soil temperature than drier ecosystems (palsa dry tundra, bog, and fen), whereas the latter ecosystems conversely are relatively more sensitive to changes of the water table position. Sites with near-surface permafrost had lower CH4 fluxes than sites without permafrost at comparable water table positions, a difference that was explained by lower soil temperatures. Neither the active layer depth nor the organic soil layer depth was related to CH4 emissions. Permafrost thaw in lowland regions is often associated with increased soil moisture, higher soil temperatures, and increased sedge cover. In our database, lowland thermokarst sites generally had higher emissions than adjacent sites with intact permafrost, but emissions from thermokarst sites were not statistically higher than emissions from permafrost-free sites with comparable environmental conditions. Overall, these results suggest that future changes to terrestrial high-latitude CH4 emissions will be more proximately related to changes in moisture, soil temperature, and vegetation composition than to increased availability of organic matter following permafrost thaw.

read more

Citations
More filters
Journal ArticleDOI

Surface water inundation in the boreal-Arctic: potential impacts on regional methane emissions

TL;DR: In this article, a satellite data driven model investigation of the combined effects of surface warming and moisture variability on high northern latitude (⩾45° N) wetland emissions, by considering sub-grid scale changes in fractional water inundation (Fw) at 15 day, monthly and annual intervals using 25km resolution satellite microwave retrievals, and the impact of recent (2003-11) wetting/drying on northern CH4 emissions.
Journal ArticleDOI

Methane Feedbacks to the Global Climate System in a Warmer World

TL;DR: In this article, the authors synthesize biological, geochemical, and physically focused CH4 climate feedback literature, bringing together the key findings of these disciplines, and discuss environment-specific feedback processes, including the microbial, physical, and geochemical interlinkages and the timescales on which they operate.
References
More filters

Climate change 2007: the physical science basis

TL;DR: The first volume of the IPCC's Fourth Assessment Report as mentioned in this paper was published in 2007 and covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.
Journal ArticleDOI

Very high resolution interpolated climate surfaces for global land areas.

TL;DR: In this paper, the authors developed interpolated climate surfaces for global land areas (excluding Antarctica) at a spatial resolution of 30 arc s (often referred to as 1-km spatial resolution).

Regional climate projections

TL;DR: Arritt et al. as discussed by the authors presented a survey of the state-of-the-art work in the field of sport psychology, including the following authors: R. Arritt (USA), R. Benestad (Norway), M. Beniston (Switzerland), D.Caya (Canada), J.C. Caya, J.F. Comiso, R.H. Feddema, A.L. Lowe (UK), A.S. Nokhandan (Iran), JC. New (UK, M.
Journal ArticleDOI

Production, oxidation, emission and consumption of methane by soils: A review

TL;DR: In this article, the anaerobic zones of submerged soils by methanogens and methanotrophs are oxidised into CO2 in the aerobic zones of wetland soils and in upland soils.
Related Papers (5)