scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Environmental Applications of Semiconductor Photocatalysis

01 Jan 1995-Chemical Reviews (American Chemical Society)-Vol. 95, Iss: 1, pp 69-96
TL;DR: The slow pace of hazardous waste remediation at military installations around the world is causing a serious delay in conversion of many of these facilities to civilian uses as discussed by the authors, which is a serious problem.
Abstract: The civilian, commercial, and defense sectors of most advanced industrialized nations are faced with a tremendous set of environmental problems related to the remediation of hazardous wastes, contaminated groundwaters, and the control of toxic air contaminants. For example, the slow pace of hazardous waste remediation at military installations around the world is causing a serious delay in conversion of many of these facilities to civilian uses. Over the last 10 years problems related to hazardous waste remediation have emerged as a high national and international priority.
Citations
More filters
Journal ArticleDOI
TL;DR: This review attempts to cover all aspects, including underlying principles and key functional features of TiO(2), in a comprehensive way and also indicates potential future directions of the field.
Abstract: TiO(2) is one of the most studied compounds in materials science. Owing to some outstanding properties it is used for instance in photocatalysis, dye-sensitized solar cells, and biomedical devices. In 1999, first reports showed the feasibility to grow highly ordered arrays of TiO(2) nanotubes by a simple but optimized electrochemical anodization of a titanium metal sheet. This finding stimulated intense research activities that focused on growth, modification, properties, and applications of these one-dimensional nanostructures. This review attempts to cover all these aspects, including underlying principles and key functional features of TiO(2), in a comprehensive way and also indicates potential future directions of the field.

2,735 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent developments in the area of TiO 2 photocatalysis research, in terms of new materials from a structural design perspective, has been summarized.
Abstract: TiO 2 photocatalysis is widely used in a variety of applications and products in the environmental and energy fields, including self-cleaning surfaces, air and water purification systems, sterilization, hydrogen evolution, and photoelectrochemical conversion. The development of new materials, however, is strongly required to provide enhanced performances with respect to the photocatalytic properties and to find new uses for TiO 2 photocatalysis. In this review, recent developments in the area of TiO 2 photocatalysis research, in terms of new materials from a structural design perspective, have been summarized. The dimensionality associated with the structure of a TiO 2 material can affect its properties and functions, including its photocatalytic performance, and also more specifically its surface area, adsorption, reflectance, adhesion, and carrier transportation properties. We provide a brief introduction to the current situation in TiO 2 photocatalysis, and describe structurally controlled TiO 2 photocatalysts which can be classified into zero-, one-, two-, and three-dimensional structures. Furthermore, novel applications of TiO 2 surfaces for the fabrication of wettability patterns and for printing are discussed.

2,733 citations

Journal ArticleDOI
TL;DR: A comprehensive analysis of the reported effects of dopants on the anatase to rutile phase transformation and the mechanisms by which these effects are brought about is presented in this article, yielding a plot of the cationic radius versus the valence characterised by a distinct boundary between inhibitors and promoters.
Abstract: Titanium dioxide, TiO2, is an important photocatalytic material that exists as two main polymorphs, anatase and rutile. The presence of either or both of these phases impacts on the photocatalytic performance of the material. The present work reviews the anatase to rutile phase transformation. The synthesis and properties of anatase and rutile are examined, followed by a discussion of the thermodynamics of the phase transformation and the factors affecting its observation. A comprehensive analysis of the reported effects of dopants on the anatase to rutile phase transformation and the mechanisms by which these effects are brought about is presented in this review, yielding a plot of the cationic radius versus the valence characterised by a distinct boundary between inhibitors and promoters of the phase transformation. Further, the likely effects of dopant elements, including those for which experimental data are unavailable, on the phase transformation are deduced and presented on the basis of this analysis.

2,570 citations

Journal ArticleDOI
TL;DR: This critical review summarizes the recent progress in the design and fabrication of graphene-based semiconductor photocatalysts via various strategies including in situ growth, solution mixing, hydrothermal and/or solvothermal methods.
Abstract: Graphene, a single layer of graphite, possesses a unique two-dimensional structure, high conductivity, superior electron mobility and extremely high specific surface area, and can be produced on a large scale at low cost. Thus, it has been regarded as an important component for making various functional composite materials. Especially, graphene-based semiconductor photocatalysts have attracted extensive attention because of their usefulness in environmental and energy applications. This critical review summarizes the recent progress in the design and fabrication of graphene-based semiconductor photocatalysts via various strategies including in situ growth, solution mixing, hydrothermal and/or solvothermal methods. Furthermore, the photocatalytic properties of the resulting graphene-based composite systems are also discussed in relation to the environmental and energy applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation and photocatalytic disinfection. This critical review ends with a summary and some perspectives on the challenges and new directions in this emerging area of research (158 references).

2,451 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the current approaches for the heterogeneous photocatalytic reduction of CO2 on TiO2 and other metal oxide, oxynitride, sulfide, and phosphide semiconductors.
Abstract: Rising atmospheric levels of carbon dioxide and the depletion of fossil fuel reserves raise serious concerns about the ensuing effects on the global climate and future energy supply. Utilizing the abundant solar energy to convert CO2 into fuels such as methane or methanol could address both problems simultaneously as well as provide a convenient means of energy storage. In this Review, current approaches for the heterogeneous photocatalytic reduction of CO2 on TiO2 and other metal oxide, oxynitride, sulfide, and phosphide semiconductors are presented. Research in this field is focused primarily on the development of novel nanostructured photocatalytic materials and on the investigation of the mechanism of the process, from light absorption through charge separation and transport to CO2 reduction pathways. The measures used to quantify the efficiency of the process are also discussed in detail.

2,273 citations

References
More filters
Book
01 Jan 1993
TL;DR: An Introduction to Environmental Organic Chemicals is given in this article, where the authors present an overview of the main steps in the development of these processes, including the following: Sorption I: General Introduction and Sorption Processes Involving Organic Matter. Sorption II: Partitioning to Living Media - Bioaccumulation and Baseline Toxicity.
Abstract: Preface. Part I: Introduction. 1. General Topic and Overview. 2. An Introduction to Environmental Organic Chemicals. Part II: Equilibrium Partitioning Between Gaseous, Liquid, and Solid Phases. 3. Partitioning: Molecular Interactions and Thermodynamics. 4. Vapor Pressure. 5. Activity Coefficient and Solubility in Water. 6. Air-Organic Solvent and Air-Water Partitioning. 7. Organic Liquid-Water Partitioning. 8. Organic Acids and Bases: Acidity Constant and Partitioning Behavior. 9. Sorption I: General Introduction and Sorption Processes Involving Organic Matter. 10. Sorption II: Partitioning to Living Media - Bioaccumulation and Baseline Toxicity. 11. Sorption III: Sorption Processes Involving Inorganic Surfaces. Part III: Transformation Processes. 12. Thermodynamics and Kinetics of Transformation Reactions. 13. Chemical Transformations I: Hydrolysis and Reactions Involving Other Nucleophilic Species. 14. Chemical Transformations II: Redox Reactions. 15. Direct Photolysis. 16. Indirect Photolysis: Reactions with Photooxidants in Natural Waters and in the Atmosphere. 17. Biological Transformations. Part IV: Modeling Tools: Transport and Reaction. 18. Transport by Random Motion. 19. Transport Through Boundaries. 20. Air-Water Exchange. 21. Box Models. 22. Models in Space and Time. Part V: Environmental Systems and Case Studies. 23. Ponds, Lakes, and Oceans. 24. Rivers. 25. Groundwater. Appendix. Bibliography. Index (Subject Index, Compound Index, List of Illustrative Examples).

4,403 citations

Book
01 Jan 1992

1,918 citations

Book
01 Oct 1989
TL;DR: In this paper, the reader is first introduced to the meaning of photocatalysis and subsequently taken through the essentials of photochemistry towards bridging it to semiconductor materials, followed by thermodynamic and kinetic aspects.
Abstract: The book is devoted to the study of photocatalysis, a very popular area of modern-day chemistry. The various chapters will cover aspects of the field that are of particular interest to those at the top in research expertise. Among the subjects discussed are: the theory and preparation of semiconductor mate- rials, the various types of heterogeneous photocatalysis methods, absorption and desorption in photocatalysis, and applied photoca- talysis in energy production. A knowledge of photochemistry is not essential as the format and selection of topics make the field evolve naturally. The student is first introduced to the meaning of photocatalysis and subsequently taken through the essentials of photochemistry towards bridging it to semiconductor materials. The reader is also introduced to the colloidal state of semiconductors followed by thermodynamic and kinetic aspects of photocatalysis. The book is aimed at professional, faculty and graduate students in inorganic and physical chemistry, organic chemistry, oganometallic chemistry, and catalysis.

1,660 citations

Book
30 Nov 1980
TL;DR: In this paper, the authors present a theoretical analysis of the energy levels at the surface of a delectable deformed deformed metal deformed by Mott-Schottky Plots.
Abstract: 1. The Solid and the Solution.- 1.1. The Solid.- 1.1.1. Donors, Acceptors, and Traps.- 1.1.2. Energy Levels at the Surface.- 1.1.3. Conductance in Solids.- 1.2. The Solution.- 1.2.1. Introduction.- 1.2.2. The Electrode Fermi Energy as a Function of the Redox Couples in Solution.- 1.2.3. The Relation between the Hydrogen and the Vacuum Scales of Energy.- 1.2.4. Fluctuating Energy Levels in Solution.- 1.2.5. The Energy Levels Associated with Two-Equivalent Ions.- 1.2.6. Conductance in Liquids.- 2. The Solid/Liquid Interface.- 2.1. Surface Ions and Their Energy Levels.- 2.1.1. Adsorption.- 2.1.2. Surface States at the Solid/Liquid Interface.- 2.2. Double Layers at the Solid/Liquid Interface.- 2.2.1. General.- 2.2.2. The Gouy Layer.- 2.2.3. The Helmholtz Double Layer.- 2.2.4. The Space Charge Double Layer in the Semiconductor.- 2.3. Theoretical Predictions of the Energy Levels of Band Edges.- 2.4. The Band Model of the Solid/Solution Interface.- 3. Theory of Electron and Hole Transfer.- 3.1. Introduction.- 3.1.1. General.- 3.1.2. The Activation Energy in Electrode Reactions.- 3.2. Classical Model.- 3.3. The Energy Level Model of Charge Transfer.- 3.3.1. General.- 3.3.2. The Metal Electrode.- 3.3.3. The Semiconductor Electrode.- 3.4. Qualitative Description of Electrode Processes Using the Band Model.- 3.4.1. The Behavior of the Metal Electrode.- 3.4.2. The Behavior of the Semiconductor Electrode.- 3.4.3. The Transition between Semiconductor and Metallic Behavior.- 4. Measurement Techniques.- 4.1. Capacity Measurements.- 4.1.1. Introduction.- 4.1.2. Measurement Theory.- 4.1.3. Analysis.- 4.1.4. Complex Mott-Schottky Plots.- 4.1.5. Determination of Band Edges.- 4.2. Measurements of the Current/Voltage Characteristics.- 4.2.1. General Techniques Voltammetry.- 4.2.2. Rotating Electrodes.- 4.2.3. Illumination.- 4.3. Other Techniques.- 4.3.1. Techniques for Vs Measurement.- 4.3.2. Techniques to Determine Surface Species or Phases.- 4.3.3. Techniques to Study Electrode Reactions.- 5. The Properties of the Electrode and Their Effect on Electrochemical Measurements.- 5.1. The Behavior of the Perfect Crystal.- 5.1.1. The Helmholtz Double Layer: The Surface Charges on the Electrode.- 5.1.2. The Space Charge Region of the Perfect Crystal.- 5.2. The Behavior of Electrode Defects.- 5.2.1. Introduction.- 5.2.2. Deviations of Mott-Schottky Plots Due to Bulk Flaws.- 5.2.3. Current Flow Associated with Bulk Flaws.- 5.3. Observed Flat Band Potentials for Various Semiconductors.- 6. Observations of Charge Transfer at an Inert Semiconductor Electrode.- 6.1. Introduction.- 6.2. Majority Carrier Capture.- 6.2.1. Direct Carrier Transfer to Ions in Solution.- 6.2.2. Indirect Electron Transfer to Ions in Solution.- 6.3. Minority Carrier Capture.- 6.3.1. Minority Carrier Capture on Two-Equivalent Species: Radical Formation and Current Doubling.- 6.3.2. Minority Carrier Capture by One-Equivalent Ions.- 6.3.3. Photocatalysis.- 6.4. Intrinsic Surface States and Recombination Centers.- 6.4.1. Intrinsic Surface States as Carrier Transfer Centers.- 6.4.2. Intrinsic Surface States and Ions in Solution as Recombination Centers.- 6.5. Carrier Injection.- 6.5.1. Direct Electron and Hole Injection.- 6.5.2. Injection by Tunneling.- 6.5.3. Injection by Optically Excited Ions: Dye Injection.- 6.6. High-Current, High-Voltage Processes.- 6.6.1. Introduction.- 6.6.2. High Currents with Accumulation Layers.- 6.6.3. Tunneling and Breakdown on Non-Transition-Metal Semiconductors.- 6.6.4. Practical Electrodes.- 6.7. Analysis of Complicated Electrode Reactions using the Tools of Semiconductor Electrochemistry.- 6.7.1. The Photocatalytic Oxidation of Formic Acid.- 6.7.2. Analysis of the Energy Levels of Two-Equivalent Species.- 6.7.3. The Reduction of Iodine on CdS.- 7. Chemical Transformation in the Electrode Reaction.- 7.1. Introduction.- 7.2. Inner Sphere Changes during Redox Reactions at an Inert Electrode.- 7.3. Adsorption onto and Absorption into the Electrode.- 7.3.1. Adsorption of Water, Hydrogen, and Oxygen.- 7.3.2. Adsorption of Electrolyte Ions.- 7.3.3. Action of Deposited Species.- 7.3.4. Movement of Impurities and Defects into the Electrode.- 7.4. Corrosion.- 7.4.1. Introduction.- 7.4.2. Theory and Observations of Semiconductor Corrosion.- 7.4.3. Stabilizing Agents to Prevent Corrosion.- 8. Coated Electrodes.- 8.1. Introduction.- 8.1.1. The Band Model for Oxide Films.- 8.1.2. Thin Films.- 8.1.3. The Structure of Thick Films.- 8.2. Current Transport through Oxide Films.- 8.2.1. Thin Oxide Layers.- 8.2.2. Model of Electronic Conduction through Thick Coherent Layers.- 8.2.3. Semiconducting Oxide Layers on Metal Electrodes.- 8.2.4. Insulating Layers on Metal and Semiconductor Electrodes.- 8.3. Deposition of Reaction Products on Semiconductor Electrodes.- 9. Applications of Semiconductor Electrodes.- 9.1. Solar Energy Conversion.- 9.1.1. Introduction.- 9.1.2. Photovoltaic Cells.- 9.1.3. Conversion of Optical to Chemical Energy.- 9.1.4. Corrosion of PEC Cells.- 9.1.5. The Future Potential of PEC Solar Cells.- 9.2. Electrocatalysis on Semiconductors.- 9.2.1. General.- 9.2.2. Surface State Additives and Narrow Bands in Electrocatalysis.- 9.3. New Devices.- 9.4. Electropolishing of Semiconductors.- References.- References to Review Articles and Books.- Author Index.

1,292 citations