scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Epidemiology of SARS-CoV-2 Infection Evaluated by Immunochromatographic Rapid Testing for the Determination of IgM and IgG Against SARS-CoV-2 in a Cohort of Mask Wearing Workers in the Metal-Mechanical Sector in an Area With a High Incidence of COVID-19.

TL;DR: In this article, the authors evaluated the true epidemiology of SARS-CoV-2 infection among workers in the metal-mechanical sector who never stopped working during the pandemic period in an area with a high incidence of COVID-19 and to define whether and how they could continue the work without appreciable risks during a second wave.
Abstract: Background: Although the diagnosis of new coronavirus 2019 (COVID-19) is made through the identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in respiratory secretions by means of molecular methods, a more accurate estimation of SARS-CoV-2 circulation can be obtained by seroprevalence studies. The main aim of this study was to evaluate the true epidemiology of SARS-CoV-2 infection among workers in the metal-mechanical sector who never stopped working during the pandemic period in an area with a high incidence of COVID-19 and to define whether and how they could continue the work without appreciable risks during a second wave. Methods: A total of 815 metal-mechanical workers who had never stopped working even during the pandemic period in three different factories in the Emilia-Romagna Region, Italy, and who had always used face masks during working hours, underwent a capillary blood rapid test for the determination of IgM and IgG against SARS-CoV-2 (COVID-19 IgG/IgM Rapid test, PrimaLab, Modena, Italy). In the event of a positive test, a nasopharyngeal was performed and tested for the presence of SARS-CoV-2. Results: The detection of serum IgG/IgM against SARS-CoV-2 was significantly more common among workers employed in Parma (21/345, 6.1%) than among those employed in Calerno (7/242, 2.9%) or in Spilamberto (3/228, 1.3%) (p <0.001). The analysis of the role of the different variables as predictors of seropositivity for IgG/IgM against SARS-CoV-2 revealed that the presence of specific antibodies was strictly associated with a previous history of COVID-19-like symptoms (odds ratio [OR] 3.95, 95% confidence interval [CI] 1.9-8.2) and household members with COVID-19-like symptoms (OR 2.20, 95% CI 1.04-4.82). Conclusion: This study shows that seropositivity to SARS-CoV-2 is low even among employees who did not interrupt their work during the lockdown phase in a region with a high incidence of COVID-19. The use of face masks appears effective in the avoidance of the transmission of SARS-CoV-2 in factories even in the presence of asymptomatic or mildly symptomatic workers, suggesting that work activities can continue if adequate infection control measures are used during a second wave.

Content maybe subject to copyright    Report

References
More filters
Journal ArticleDOI
TL;DR: A validated diagnostic workflow for 2019-nCoV is presented, its design relying on close genetic relatedness of 2019- nCoV with SARS coronavirus, making use of synthetic nucleic acid technology.
Abstract: Background The ongoing outbreak of the recently emerged novel coronavirus (2019-nCoV) poses a challenge for public health laboratories as virus isolates are unavailable while there is growing evidence that the outbreak is more widespread than initially thought, and international spread through travellers does already occur. Aim We aimed to develop and deploy robust diagnostic methodology for use in public health laboratory settings without having virus material available. Methods Here we present a validated diagnostic workflow for 2019-nCoV, its design relying on close genetic relatedness of 2019-nCoV with SARS coronavirus, making use of synthetic nucleic acid technology. Results The workflow reliably detects 2019-nCoV, and further discriminates 2019-nCoV from SARS-CoV. Through coordination between academic and public laboratories, we confirmed assay exclusivity based on 297 original clinical specimens containing a full spectrum of human respiratory viruses. Control material is made available through European Virus Archive – Global (EVAg), a European Union infrastructure project. Conclusion The present study demonstrates the enormous response capacity achieved through coordination of academic and public laboratories in national and European research networks.

6,229 citations

Journal ArticleDOI
TL;DR: The humoral response to SARS-CoV-2 can aid in the diagnosis of COVID-19, including subclinical cases, and the detection efficiency by IgM ELISA is higher than that of qPCR after 5.5 days of symptom onset.
Abstract: Background The emergence of coronavirus disease 2019 (COVID-19) is a major healthcare threat. The current method of detection involves a quantitative polymerase chain reaction (qPCR)-based technique, which identifies the viral nucleic acids when present in sufficient quantity. False-negative results can be achieved and failure to quarantine the infected patient would be a major setback in containing the viral transmission. We aim to describe the time kinetics of various antibodies produced against the 2019 novel coronavirus (SARS-CoV-2) and evaluate the potential of antibody testing to diagnose COVID-19. Methods The host humoral response against SARS-CoV-2, including IgA, IgM, and IgG response, was examined by using an ELISA-based assay on the recombinant viral nucleocapsid protein. 208 plasma samples were collected from 82 confirmed and 58 probable cases (qPCR negative but with typical manifestation). The diagnostic value of IgM was evaluated in this cohort. Results The median duration of IgM and IgA antibody detection was 5 (IQR, 3-6) days, while IgG was detected 14 (IQR, 10-18) days after symptom onset, with a positive rate of 85.4%, 92.7%, and 77.9%, respectively. In confirmed and probable cases, the positive rates of IgM antibodies were 75.6% and 93.1%, respectively. The detection efficiency by IgM ELISA is higher than that of qPCR after 5.5 days of symptom onset. The positive detection rate is significantly increased (98.6%) when combining IgM ELISA assay with PCR for each patient compared with a single qPCR test (51.9%). Conclusions The humoral response to SARS-CoV-2 can aid in the diagnosis of COVID-19, including subclinical cases.

1,350 citations

Journal ArticleDOI
30 Jun 2020-Nature
TL;DR: Light is shed on the frequency of asymptomatic SARS-CoV-2 infection, their infectivity (as measured by the viral load) and the insights into its transmission dynamics and the efficacy of the implemented control measures are provided.
Abstract: On 21 February 2020, a resident of the municipality of Vo', a small town near Padua (Italy), died of pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection1. This was the first coronavirus disease 19 (COVID-19)-related death detected in Italy since the detection of SARS-CoV-2 in the Chinese city of Wuhan, Hubei province2. In response, the regional authorities imposed the lockdown of the whole municipality for 14 days3. Here we collected information on the demography, clinical presentation, hospitalization, contact network and the presence of SARS-CoV-2 infection in nasopharyngeal swabs for 85.9% and 71.5% of the population of Vo' at two consecutive time points. From the first survey, which was conducted around the time the town lockdown started, we found a prevalence of infection of 2.6% (95% confidence interval (CI): 2.1-3.3%). From the second survey, which was conducted at the end of the lockdown, we found a prevalence of 1.2% (95% CI: 0.8-1.8%). Notably, 42.5% (95% CI: 31.5-54.6%) of the confirmed SARS-CoV-2 infections detected across the two surveys were asymptomatic (that is, did not have symptoms at the time of swab testing and did not develop symptoms afterwards). The mean serial interval was 7.2 days (95% CI: 5.9-9.6). We found no statistically significant difference in the viral load of symptomatic versus asymptomatic infections (P = 0.62 and 0.74 for E and RdRp genes, respectively, exact Wilcoxon-Mann-Whitney test). This study sheds light on the frequency of asymptomatic SARS-CoV-2 infection, their infectivity (as measured by the viral load) and provides insights into its transmission dynamics and the efficacy of the implemented control measures.

882 citations

Journal ArticleDOI
23 Jun 2020-Science
TL;DR: By introducing age and activity heterogeneities into population models for SARS-CoV-2, herd immunity can be achieved at a population-wide infection rate of ∼40%, considerably lower than previous estimates.
Abstract: Despite various levels of preventive measures, in 2020 many countries have suffered severely from the coronavirus 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus We show that population heterogeneity can significantly impact disease-induced immunity as the proportion infected in groups with the highest contact rates is greater than in groups with low contact rates We estimate that if R0 = 25 in an age-structured community with mixing rates fitted to social activity then the disease-induced herd immunity level can be around 43%, which is substantially less than the classical herd immunity level of 60% obtained through homogeneous immunization of the population Our estimates should be interpreted as an illustration of how population heterogeneity affects herd immunity, rather than an exact value or even a best estimate

574 citations

Journal ArticleDOI
TL;DR: This research should inform control programmes of the required performance and utility of rapid serology tests, which, when applied specifically for appropriate public health measures to then be put in place, can make a huge difference.
Abstract: The collapse of global cooperation and a failure of international solidarity have led to many low-income and middle-income countries being denied access to molecular diagnostics in the COVID-19 pandemic response. Yet the scarcity of knowledge on the dynamics of the immune response to infection has led to hesitation on recommending the use of rapid immunodiagnostic tests, even though rapid serology tests are commercially available and scalable. On the basis of our knowledge and understanding of viral infectivity and host response, we urge countries without the capacity to do molecular testing at scale to research the use of serology tests to triage symptomatic patients in community settings, to test contacts of confirmed cases, and in situational analysis and surveillance. The WHO R&D Blue Print expert group identified eight priorities for research and development, of which the highest is to mobilise research on rapid point-of-care diagnostics for use at the community level. This research should inform control programmes of the required performance and utility of rapid serology tests, which, when applied specifically for appropriate public health measures to then be put in place, can make a huge difference.

261 citations

Related Papers (5)