scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Epigenetic codes in cognition and behaviour.

01 Sep 2008-Behavioural Brain Research (Elsevier)-Vol. 192, Iss: 1, pp 70-87
TL;DR: Recent findings on the role and mechanisms of epigenetic codes in the brain are described, and their implication in synaptic plasticity, cognitive functions and psychiatric disorders are discussed.
About: This article is published in Behavioural Brain Research.The article was published on 2008-09-01. It has received 260 citations till now. The article focuses on the topics: Epigenetic code & Epigenetics.
Citations
More filters
Journal ArticleDOI
TL;DR: The hypothesis that genotypes predispose the likelihood of displaying various epitypes, but for only a few classes of epitype, is explored, which suggests that renewed efforts are needed in identifying polymorphic DNA sequences that determine variable nucleosome positioning and DNA methylation as the primary cause of inherited epigenome-induced pathologies.
Abstract: Clear cause-and-effect relationships are commonly established between genotype and the inherited risk of acquiring human and plant diseases and aberrant phenotypes. By contrast, few such cause-and-effect relationships are established linking a chromatin structure (that is, the epitype) with the transgenerational risk of acquiring a disease or abnormal phenotype. It is not entirely clear how epitypes are inherited from parent to offspring as populations evolve, even though epigenetics is proposed to be fundamental to evolution and the likelihood of acquiring many diseases. This article explores the hypothesis that, for transgenerationally inherited chromatin structures, “genotype predisposes epitype”, and that epitype functions as a modifier of gene expression within the classical central dogma of molecular biology. Evidence for the causal contribution of genotype to inherited epitypes and epigenetic risk comes primarily from two different kinds of studies discussed herein. The first and direct method of research proceeds by the examination of the transgenerational inheritance of epitype and the penetrance of phenotype among genetically related individuals. The second approach identifies epitypes that are duplicated (as DNA sequences are duplicated) and evolutionarily conserved among repeated patterns in the DNA sequence. The body of this article summarizes particularly robust examples of these studies from humans, mice, Arabidopsis, and other organisms. The bulk of the data from both areas of research support the hypothesis that genotypes predispose the likelihood of displaying various epitypes, but for only a few classes of epitype. This analysis suggests that renewed efforts are needed in identifying polymorphic DNA sequences that determine variable nucleosome positioning and DNA methylation as the primary cause of inherited epigenome-induced pathologies. By contrast, there is very little evidence that DNA sequence directly determines the inherited positioning of numerous and diverse post-translational modifications of histone side chains within nucleosomes. We discuss the medical and scientific implications of these observations on future research and on the development of solutions to epigenetically induced disorders.

23 citations


Cites background from "Epigenetic codes in cognition and b..."

  • ...The inheritance of numerous genetic risk factors for human and plant diseases as well as biotic and abiotic stress susceptibility phenotypes are well established [16]....

    [...]

  • ...The influences of age and environment (for example, chemicals, heat, nutrition, daylight) on various pathologies and the seemingly stochastic penetrance of developmental abnormalities are particularly difficult to interpret using purely molecular genetic models and are more easily explained by considering epigenetic control mechanisms [13-18]....

    [...]

Journal ArticleDOI
TL;DR: The current state of the art for the proteomic analysis of the epigenetic regulation of gene expression, in particular the PTM of histones, in the brain and cellular model systems is summarized.
Abstract: In the central nervous system, epigenetic processes are involved in a multitude of brain functions ranging from the development and differentiation of the nervous system through to higher-order cognitive processes such as learning and memory This review summarises the current state of the art for the proteomic analysis of the epigenetic regulation of gene expression, in particular the PTM of histones, in the brain and cellular model systems It describes the MS technologies that have helped the identification and analysis of histones, histone variants and PTMs in the brain Strategies for the isolation of histones that allow the qualitative analysis of PTMs and their combinatorial patterns are introduced, methods for the relative and absolute quantification of histone PTMs are described, and future challenges are discussed

22 citations


Cites background from "Epigenetic codes in cognition and b..."

  • ...In addition, a defective histone PTM profile in nerve cells has been observed in neurodevelopmental, neurodegenerative and neuropsychiatric disorders [4,44]....

    [...]

  • ...Histone PTMs also contribute to complex brain functions such as learning and memory, and together with other epigenetic mechanisms such as DNA methylation, they play a fundamental role in these processes [4, 16, 25]....

    [...]

  • ...Dysregulation of the epigenetic profile of nerve cells can be detrimental, and has been associated with neurodevelopmental, neurodegenerative and neuropsychiatric disorders [4]....

    [...]

Journal ArticleDOI
TL;DR: It is demonstrated that modifying epigenetic mechanisms via SAHA can prevent or reverse impairments in long-term plasticity and memory that result from sleep loss, and could be a potential therapeutic agent in improving SD-related memory deficits.
Abstract: Sleep plays an important role in the establishment of long-term memory; as such, lack of sleep severely impacts domains of our health including cognitive function. Epigenetic mechanisms regulate gene transcription and protein synthesis, playing a critical role in the modulation of long-term synaptic plasticity and memory. Recent evidences indicate that transcriptional dysregulation as a result of sleep deprivation (SD) may contribute to deficits in plasticity and memory function. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA), also known as Vorinostat, a clinically approved drug for human use, has been shown to ameliorate cognitive deficits in several neurological disease models. To further explore the therapeutic effect of SAHA, we have examined its potential role in improving the SD-mediated impairments in long-term plasticity, associative plasticity, and associative memory. Here we show that SAHA preserves long-term plasticity, associative plasticity, and associative memory in SD hippocampus. Furthermore, we find that SAHA prevents SD-mediated epigenetic changes by upregulating histone acetylation, hence preserving the ERK-cAMP-responsive element-binding protein (CREB)/CREB-binding protein-brain-derived neurotrophic factor pathway in the hippocampus. These data demonstrate that modifying epigenetic mechanisms via SAHA can prevent or reverse impairments in long-term plasticity and memory that result from sleep loss. Thus, SAHA could be a potential therapeutic agent in improving SD-related memory deficits.

22 citations

Journal ArticleDOI
TL;DR: It is found that the sensorimotor integration process plays a relevant role in elementary mechanisms involved in occurrence of abnormalities in most common psychiatric disorders, participating in the acquisition of abilities that have as critical factor the coupling of different sensory data which will constitute the basis of elaboration of consciously goal-directed motor outputs.
Abstract: Objectives. Recent evidence is reviewed to examine relationships among sensorimotor and cognitive aspects in some important psychiatry disorders. This study reviews the theoretical models in the co...

22 citations

Journal ArticleDOI
TL;DR: It was showed that differences in climbing propensity exist in glass eels separated by water obstacles, which could be related to coping styles of fish, where proactive ‘leaders’ express a routine and risky behaviour, whereas reactive fish need an environmental assessment before exploratory behaviour.
Abstract: European eel (Anguilla anguilla) is a catadromous fish species that received substantial attention as its population has markedly declined in the last three decades. The possible causes of this decline include habitat fragmentation factors such as dams and weirs. In some cases, these obstacles are equipped with fish friendly passage devices that may select young eels according to their climbing behaviour. We tested how individual climbing tendency was related to the event of fishway passage experienced in the field and classified fish climbing profiles as climbing 'leaders', 'followers', 'finishers' and 'no climbers'. Moreover, we analysed the brain transcription level of genes related to neurogenesis and synaptic plasticity and compared it to climbing profiles. We found that fish from the upstream segments of an impounded river had a higher climbing propensity. Their behaviour was also more repeatable throughout the whole test than the obstacle-naive fish from the downstream segment. Moreover, we found that boldly climbing 'leaders' had lower levels of transcription of synapse-related genes than the climbing 'followers'. These differences could be related to coping styles of fish, where proactive 'leaders' express a routine and risky behaviour, whereas reactive fish need an environmental assessment before exploratory behaviour. Our study showed that differences in climbing propensity exist in glass eels separated by water obstacles. Moreover, eels could adopt climbing different strategies according to the way they deal with environmental stress and to the cognitive abilities they possess.

22 citations


Cites result from "Epigenetic codes in cognition and b..."

  • ...Moreover, as differences in the transcription level of genes related to cognitive function had already been detected among similar groups of fishes [11], and their long-term persistence was recently shown [10], we additionally measured the transcription level of four genes related to long lasting regulation of cognitive function [13,14] and compared it to experimentally measured climbing behaviour....

    [...]

References
More filters
Journal ArticleDOI
07 Jan 1993-Nature
TL;DR: The best understood form of long-term potentiation is induced by the activation of the N-methyl-d-aspartate receptor complex, which allows electrical events at the postsynaptic membrane to be transduced into chemical signals which, in turn, are thought to activate both pre- and post Synaptic mechanisms to generate a persistent increase in synaptic strength.
Abstract: Long-term potentiation of synaptic transmission in the hippocampus is the primary experimental model for investigating the synaptic basis of learning and memory in vertebrates. The best understood form of long-term potentiation is induced by the activation of the N-methyl-D-aspartate receptor complex. This subtype of glutamate receptor endows long-term potentiation with Hebbian characteristics, and allows electrical events at the postsynaptic membrane to be transduced into chemical signals which, in turn, are thought to activate both pre- and postsynaptic mechanisms to generate a persistent increase in synaptic strength.

11,123 citations


"Epigenetic codes in cognition and b..." refers background in this paper

  • ...These forms f plasticity reflect respectively, an increase and a decrease in he efficiency of synaptic transmission, and have been extenively studied in the hippocampus, a brain area required for earning and memory (for a review see [30])....

    [...]

Journal ArticleDOI
23 Feb 2007-Cell
TL;DR: The surface of nucleosomes is studded with a multiplicity of modifications that can dictate the higher-order chromatin structure in which DNA is packaged and can orchestrate the ordered recruitment of enzyme complexes to manipulate DNA.

10,046 citations


"Epigenetic codes in cognition and b..." refers background in this paper

  • ...Chronic xposure to an aggressor results in pronounced social avoidnce, prolonged downregulation of two splice variants of Bdnf, dnfIII and BdnfIV in the hippocampus and increased promoter imethylation of H3K27 [102], a mark of transcriptional represion [20]....

    [...]

Journal ArticleDOI
10 Aug 2001-Science
TL;DR: It is proposed that this epigenetic marking system represents a fundamental regulatory mechanism that has an impact on most, if not all, chromatin-templated processes, with far-reaching consequences for cell fate decisions and both normal and pathological development.
Abstract: Chromatin, the physiological template of all eukaryotic genetic information, is subject to a diverse array of posttranslational modifications that largely impinge on histone amino termini, thereby regulating access to the underlying DNA. Distinct histone amino-terminal modifications can generate synergistic or antagonistic interaction affinities for chromatin-associated proteins, which in turn dictate dynamic transitions between transcriptionally active or transcriptionally silent chromatin states. The combinatorial nature of histone amino-terminal modifications thus reveals a “histone code” that considerably extends the information potential of the genetic code. We propose that this epigenetic marking system represents a fundamental regulatory mechanism that has an impact on most, if not all, chromatin-templated processes, with far-reaching consequences for cell fate decisions and both normal and pathological development.

9,309 citations


"Epigenetic codes in cognition and b..." refers background in this paper

  • ...These nzymes operate both independently and in synergy to establish “histone code”, a highly dynamic and flexible chromatin markng that, in combination with chromatin-associated proteins, etermines the pattern of gene expression in response to given xternal stimuli [24,25]....

    [...]

Journal ArticleDOI
TL;DR: The heritability of methylation states and the secondary nature of the decision to invite or exclude methylation support the idea that DNA methylation is adapted for a specific cellular memory function in development.
Abstract: The character of a cell is defined by its constituent proteins, which are the result of specific patterns of gene expression. Crucial determinants of gene expression patterns are DNA-binding transcription factors that choose genes for transcriptional activation or repression by recognizing the sequence of DNA bases in their promoter regions. Interaction of these factors with their cognate sequences triggers a chain of events, often involving changes in the structure of chromatin, that leads to the assembly of an active transcription complex (e.g., Cosma et al. 1999). But the types of transcription factors present in a cell are not alone sufficient to define its spectrum of gene activity, as the transcriptional potential of a genome can become restricted in a stable manner during development. The constraints imposed by developmental history probably account for the very low efficiency of cloning animals from the nuclei of differentiated cells (Rideout et al. 2001; Wakayama and Yanagimachi 2001). A “transcription factors only” model would predict that the gene expression pattern of a differentiated nucleus would be completely reversible upon exposure to a new spectrum of factors. Although many aspects of expression can be reprogrammed in this way (Gurdon 1999), some marks of differentiation are evidently so stable that immersion in an alien cytoplasm cannot erase the memory. The genomic sequence of a differentiated cell is thought to be identical in most cases to that of the zygote from which it is descended (mammalian B and T cells being an obvious exception). This means that the marks of developmental history are unlikely to be caused by widespread somatic mutation. Processes less irrevocable than mutation fall under the umbrella term “epigenetic” mechanisms. A current definition of epigenetics is: “The study of mitotically and/or meiotically heritable changes in gene function that cannot be explained by changes in DNA sequence” (Russo et al. 1996). There are two epigenetic systems that affect animal development and fulfill the criterion of heritability: DNA methylation and the Polycomb-trithorax group (Pc-G/trx) protein complexes. (Histone modification has some attributes of an epigenetic process, but the issue of heritability has yet to be resolved.) This review concerns DNA methylation, focusing on the generation, inheritance, and biological significance of genomic methylation patterns in the development of mammals. Data will be discussed favoring the notion that DNA methylation may only affect genes that are already silenced by other mechanisms in the embryo. Embryonic transcription, on the other hand, may cause the exclusion of the DNA methylation machinery. The heritability of methylation states and the secondary nature of the decision to invite or exclude methylation support the idea that DNA methylation is adapted for a specific cellular memory function in development. Indeed, the possibility will be discussed that DNA methylation and Pc-G/trx may represent alternative systems of epigenetic memory that have been interchanged over evolutionary time. Animal DNA methylation has been the subject of several recent reviews (Bird and Wolffe 1999; Bestor 2000; Hsieh 2000; Costello and Plass 2001; Jones and Takai 2001). For recent reviews of plant and fungal DNA methylation, see Finnegan et al. (2000), Martienssen and Colot (2001), and Matzke et al. (2001).

6,691 citations


"Epigenetic codes in cognition and b..." refers background in this paper

  • ...ecause of the covalent nature of the binding of methyl groups o the C5 carbon in cytosine, DNA methylation is thought to be he most stable epigenetic mark [9]....

    [...]

  • ...DNA methylation is commonly associated with ranscriptional silencing because it can directly inhibit the bindng of transcription factors or regulators, or indirectly recruit ethyl-CpG binding proteins (MBPs), which have repressive hromatin-remodeling functions [9,10]....

    [...]

  • ...Most cases of RS are caused by mutaions in the gene coding for methyl-CpG binding protein 2 MeCP2) [62], a member of the MBP family involved in ong-term gene silencing (for a review see [9])....

    [...]

Journal ArticleDOI
TL;DR: Advances in the understanding of the mechanism and role of DNA methylation in biological processes are reviewed, showing that epigenetic mechanisms seem to allow an organism to respond to the environment through changes in gene expression.
Abstract: Cells of a multicellular organism are genetically homogeneous but structurally and functionally heterogeneous owing to the differential expression of genes. Many of these differences in gene expression arise during development and are subsequently retained through mitosis. Stable alterations of this kind are said to be 'epigenetic', because they are heritable in the short term but do not involve mutations of the DNA itself. Research over the past few years has focused on two molecular mechanisms that mediate epigenetic phenomena: DNA methylation and histone modifications. Here, we review advances in the understanding of the mechanism and role of DNA methylation in biological processes. Epigenetic effects by means of DNA methylation have an important role in development but can also arise stochastically as animals age. Identification of proteins that mediate these effects has provided insight into this complex process and diseases that occur when it is perturbed. External influences on epigenetic processes are seen in the effects of diet on long-term diseases such as cancer. Thus, epigenetic mechanisms seem to allow an organism to respond to the environment through changes in gene expression. The extent to which environmental effects can provoke epigenetic responses represents an exciting area of future research.

5,760 citations


"Epigenetic codes in cognition and b..." refers background in this paper

  • ...ot be explained by changes in the DNA sequence itself [3] reviewed in [4,5])....

    [...]