scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Epigenetic control of plant senescence and linked processes

01 Jul 2014-Journal of Experimental Botany (Oxford University Press)-Vol. 65, Iss: 14, pp 3875-3887
TL;DR: The review outlines the concept of epigenetic control of interconnected regulatory pathways steering stress responses and plant development and summarizes recent findings on global alterations in chromatin structure, histone and DNA modifications, and ATP-dependent chromatin remodelling during plant senescence and linked processes.
Abstract: Senescence processes are part of the plant developmental programme. They involve reprogramming of gene expression and are under the control of a complex regulatory network closely linked to other developmental and stressresponsive pathways. Recent evidence indicates that leaf senescence is regulated via epigenetic mechanisms. In the present review, the epigenetic control of plant senescence is discussed in the broader context of environmentsensitive plant development. The review outlines the concept of epigenetic control of interconnected regulatory pathways steering stress responses and plant development. Besides giving an overview of techniques used in the field, it summarizes recent findings on global alterations in chromatin structure, histone and DNA modifications, and ATPdependent chromatin remodelling during plant senescence and linked processes.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The present knowledge on chromatin-based mechanisms potentially involved in the somatic-to-embryogenic developmental transition is summarized, emphasizing the potential role of the chromatin to integrate stress, hormonal, and developmental pathways leading to the activation of the embryogenic program.

352 citations


Cites background from "Epigenetic control of plant senesce..."

  • ...The role of histone acetylation in plant senescence and stress adaptation has recently been reviewed [228]....

    [...]

Journal Article
TL;DR: In this article, AtHD1 expression and deacetylation profiles were associated with various developmental abnormalities, including early senescence, ectopic expression of silenced genes, suppression of apical dominance, homeotic changes, heterochronic shift toward juvenility, flower defects, and male and female sterility.
Abstract: Histone acetylation and deacetylation play essential roles in eukaryotic gene regulation. Reversible modifications of core histones are catalyzed by two intrinsic enzymes, histone acetyltransferase and histone deacetylase (HD). In general, histone deacetylation is related to transcriptional gene silencing, whereas acetylation correlates with gene activation. We produced transgenic plants expressing the antisense Arabidopsis HD (AtHD1) gene. AtHD1 is a homolog of human HD1 and RPD3 global transcriptional regulator in yeast. Expression of the antisense AtHD1 caused dramatic reduction in endogenous AtHD1 transcription, resulting in accumulation of acetylated histones, notably tetraacetylated H4. Reduction in AtHD1 expression and AtHD1 production and changes in acetylation profiles were associated with various developmental abnormalities, including early senescence, ectopic expression of silenced genes, suppression of apical dominance, homeotic changes, heterochronic shift toward juvenility, flower defects, and male and female sterility. Some of the phenotypes could be attributed to ectopic expression of tissue-specific genes (e.g., SUPERMAN) in vegetative tissues. No changes in genomic DNA methylation were detected in the transgenic plants. These results suggest that AtHD1 is a global regulator, which controls gene expression during development through DNA-sequence independent or epigenetic mechanisms in plants. In addition to DNA methylation, histone modifications may be involved in a general regulatory mechanism responsible for plant plasticity and variation in nature.

247 citations

Journal ArticleDOI
TL;DR: This review highlights some of the most recent findings on nuclear reorganization, histone variants, hist one chaperones, DNA- and histone modifications, and somatic and meiotic heritability in connection with stress.

135 citations

Journal ArticleDOI
TL;DR: This review addresses the need for the integration of multi-omics techniques and physiological phenotyping into holistic phenomics approaches to dissect the complex phenomenon of senescence and to elucidate the underlying molecular processes.
Abstract: The study of senescence in plants is complicated by diverse levels of temporal and spatial dynamics as well as the impact of external biotic and abiotic factors and crop plant management. Whereas the molecular mechanisms involved in developmentally regulated leaf senescence are very well understood, in particular in the annual model plant species Arabidopsis, senescence of other organs such as the flower, fruit, and root is much less studied as well as senescence in perennials such as trees. This review addresses the need for the integration of multi-omics techniques and physiological phenotyping into holistic phenomics approaches to dissect the complex phenomenon of senescence. That became feasible through major advances in the establishment of various, complementary 'omics' technologies. Such an interdisciplinary approach will also need to consider knowledge from the animal field, in particular in relation to novel regulators such as small, non-coding RNAs, epigenetic control and telomere length. Such a characterization of phenotypes via the acquisition of high-dimensional datasets within a systems biology approach will allow us to systematically characterize the various programmes governing senescence beyond leaf senescence in Arabidopsis and to elucidate the underlying molecular processes. Such a multi-omics approach is expected to also spur the application of results from model plants to agriculture and their verification for sustainable and environmentally friendly improvement of crop plant stress resilience and productivity and contribute to improvements based on postharvest physiology for the food industry and the benefit of its customers.

88 citations


Cites background from "Epigenetic control of plant senesce..."

  • ...…the analysis of regulation of senescence in plants by non-coding RNAs and epigenetic mechanisms very much lags behind understanding in animals (Ay et  al., 2014a) and the link between telomere length and senescence is not yet clearly established, although an increasing number of studies with…...

    [...]

  • ...Transcriptomics will need to be complemented also by consideration of epigenetics and small RNA regulatory mechanisms (Humbeck, 2013; Ay et  al., 2014a)....

    [...]

  • ...It has been proposed that the epigenetic regulation of senescence in plants should be considered within the broader context of environmental sensitivity of development due to their sessile lifestyle (Ay et al., 2014a)....

    [...]

Journal ArticleDOI
TL;DR: A universal nature of senescence is demonstrated, despite this process occurring in organs that have completely different functions, it is very similar; this will provide a powerful tool for plant physiology research.
Abstract: Senescence is the final stage of plant ontogeny before death. Senescence may occur naturally because of age or may be induced by various endogenous and exogenous factors. Despite its destructive character, senescence is a precisely controlled process that follows a well-defined order. It is often inseparable from programmed cell death (PCD), and a correlation between these processes has been confirmed during the senescence of leaves and petals. Despite suggestions that senescence and PCD are two separate processes, with PCD occurring after senescence, cell death responsible for senescence is accompanied by numerous changes at the cytological, physiological and molecular levels, similar to other types of PCD. Independent of the plant organ analysed, these changes are focused on initiating the processes of cellular structural degradation via fluctuations in phytohormone levels and the activation of specific genes. Cellular structural degradation is genetically programmed and dependent on autophagy. Phytohormones/plant regulators are heavily involved in regulating the senescence of plant organs and can either promote [ethylene, abscisic acid (ABA), jasmonic acid (JA), and polyamines (PAs)] or inhibit [cytokinins (CKs)] this process. Auxins and carbohydrates have been assigned a dual role in the regulation of senescence, and can both inhibit and stimulate the senescence process. In this review, we introduce the basic pathways that regulate senescence in plants and identify mechanisms involved in controlling senescence in ephemeral plant organs. Moreover, we demonstrate a universal nature of this process in different plant organs; despite this process occurring in organs that have completely different functions, it is very similar. Progress in this area is providing opportunities to revisit how, when and which way senescence is coordinated or decoupled by plant regulators in different organs and will provide a powerful tool for plant physiology research.

66 citations


Cites background from "Epigenetic control of plant senesce..."

  • ...Many stimuli that induce senescence exist, such as shortened days in autumn, drought, frost, and shading as well as ageing, phytohormone levels, higher-order epigenetic mechanisms, and the expression of specific environment-dependent genes (Ay et al. 2014; Guo & Gan 2005)....

    [...]

  • ...Genes that are up-regulated during the process are termed senescence-associated genes (SAGs), whereas genes that are down-regulated are defined as senescence downregulated genes (SDGs) (Noh & Amasino 1999; Simeonova & Mostowska 2001; Ay et al. 2014)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Evidence is shown that epigenetic processes are also involved in the regulation of leaf senescence, and changes in the chromatin structure during senescences, differential histone modifications determining active and inactive sites at senescenced genes and DNA methylation are addressed.
Abstract: Leaf senescence is regulated through a complex regulatory network triggered by internal and external signals for the reprogramming of gene expression. In plants, the major developmental phase transitions and stress responses are under epigenetic control. In this review, the underlying molecular mechanisms are briefly discussed and evidence is shown that epigenetic processes are also involved in the regulation of leaf senescence. Changes in the chromatin structure during senescence, differential histone modifications determining active and inactive sites at senescence-associated genes and DNA methylation are addressed. In addition, the role of small RNAs in senescence regulation is discussed.

32 citations

Journal ArticleDOI
TL;DR: The results obtained indicate that the modulation of macrophages by NE does not only depend on the concentration of this neurotransmitter, but also on age.

29 citations

Journal ArticleDOI
TL;DR: It may be concluded that hazel trees under in vitro conditions show specific biochemical and molecular patterns that could be a prerequisite related to the higher morphogenic potential of adult plants when they are subjected to sequential in vitro subcultures.
Abstract: The polypeptide and DNA methylation patterns of leaves from adult hazel trees maintained by sequential in vitro subcultures were analyzed. Qualitative and quantitative variations were found in the in vitro tissues as compared to both adult and juvenile forms. From the comparisons between different tree sources it may be concluded that hazel trees under in vitro conditions show specific biochemical and molecular patterns. The specificity of the induced changes could be a prerequisite related to the higher morphogenic potential of adult plants when they are subjected to sequential in vitro subcultures.

27 citations

Journal ArticleDOI
TL;DR: This work has suggested that a locus that must be repressed in a heritable fashion might have a specialized chromatin structure that is repressive to transcription, and the same locus in another cell lineage where it is heritably activemight have a permissive chromatinructure.
Abstract: gene in an “on” state in one cell lineage and in an “off” state in another cell lineage is fundamental to proper development. There is general agreement that modification of chromatin structure can contribute to this form of epigenetic regulation. Thus, a locus that must be repressed in a heritable fashion might have a specialized chromatin structure that is repressive to transcription, and the same locus in another cell lineage where it is heritably active might have a permissive chromatin structure.

26 citations

Journal ArticleDOI
TL;DR: Possible physiological roles of these nine novel SAGs during barley leaf senescence are discussed, and involvement of the phytohormones ethylene and abscisic acid in regulation of theseNine novel Senescence-induced cDNA fragments was investigated.
Abstract: Leaf senescence is the final developmental stage of a leaf. The progression of barley primary leaf senescence was followed by measuring the senescence-specific decrease in chlorophyll content and photosystem II efficiency. In order to isolate novel factors involved in leaf senescence, a differential display approach with mRNA populations from young and senescing primary barley leaves was applied. In this approach, 90 senescence up-regulated cDNAs were identified. Nine of these clones were, after sequence analyses, further characterized. The senescence-associated expression was confirmed by Northern analyses or quantitative RealTime-PCR. In addition, involvement of the phytohormones ethylene and abscisic acid in regulation of these nine novel senescence-induced cDNA fragments was investigated. Two cDNA clones showed homologies to genes with a putative regulatory function. Two clones possessed high homologies to barley retroelements, and five clones may be involved in degradation or transport processes. One of these genes was further analysed. It encodes an ADP ribosylation factor 1-like protein (HvARF1) and includes sequence motifs representing a myristoylation site and four typical and well conserved ARF-like protein domains. The localization of the protein was investigated by confocal laser scanning microscopy of onion epidermal cells after particle bombardment with chimeric HvARF1-GFP constructs. Possible physiological roles of these nine novel SAGs during barley leaf senescence are discussed.

25 citations