scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Epigenetic Gene Promoter Methylation at Birth Is Associated With Child’s Later Adiposity

TL;DR: The findings suggest a substantial component of metabolic disease risk has a prenatal developmental basis and perinatal epigenetic analysis may have utility in identifying individual vulnerability to later obesity and metabolic disease.
Abstract: OBJECTIVE Fixed genomic variation explains only a small proportion of the risk of adiposity. In animal models, maternal diet alters offspring body composition, accompanied by epigenetic changes in metabolic control genes. Little is known about whether such processes operate in humans. RESEARCH DESIGN AND METHODS Using Sequenom MassARRAY we measured the methylation status of 68 CpGs 5′ from five candidate genes in umbilical cord tissue DNA from healthy neonates. Methylation varied greatly at particular CpGs: for 31 CpGs with median methylation ≥5% and a 5–95% range ≥10%, we related methylation status to maternal pregnancy diet and to child’s adiposity at age 9 years. Replication was sought in a second independent cohort. RESULTS In cohort 1, retinoid X receptor-α (RXRA) chr9:136355885+ and endothelial nitric oxide synthase (eNOS) chr7:150315553+ methylation had independent associations with sex-adjusted childhood fat mass (exponentiated regression coefficient [β] 17% per SD change in methylation [95% CI 4–31], P = 0.009, n = 64, and β = 20% [9–32], P n = 66, respectively) and %fat mass (β = 10% [1–19], P = 0.023, n = 64 and β =12% [4–20], P = 0.002, n = 66, respectively). Regression analyses including sex and neonatal epigenetic marks explained >25% of the variance in childhood adiposity. Higher methylation of RXRA chr9:136355885+, but not of eNOS chr7:150315553+, was associated with lower maternal carbohydrate intake in early pregnancy, previously linked with higher neonatal adiposity in this population. In cohort 2, cord eNOS chr7:150315553+ methylation showed no association with adiposity, but RXRA chr9:136355885+ methylation showed similar associations with fat mass and %fat mass (β = 6% [2–10] and β = 4% [1–7], respectively, both P = 0.002, n = 239). CONCLUSIONS Our findings suggest a substantial component of metabolic disease risk has a prenatal developmental basis. Perinatal epigenetic analysis may have utility in identifying individual vulnerability to later obesity and metabolic disease.
Citations
More filters
Journal ArticleDOI
TL;DR: The extent to which DOHaD represents the result of the physiological processes of developmental plasticity, which may have potential adverse consequences in terms of NCD risk later, or whether it is the manifestation of pathophysiological processes acting in early life but only becoming apparent as disease later?
Abstract: Extensive experimental animal studies and epidemiological observations have shown that environmental influences during early development affect the risk of later pathophysiological processes associated with chronic, especially noncommunicable, disease (NCD). This field is recognized as the developmental origins of health and disease (DOHaD). We discuss the extent to which DOHaD represents the result of the physiological processes of developmental plasticity, which may have potential adverse consequences in terms of NCD risk later, or whether it is the manifestation of pathophysiological processes acting in early life but only becoming apparent as disease later. We argue that the evidence suggests the former, through the operation of conditioning processes induced across the normal range of developmental environments, and we summarize current knowledge of the physiological processes involved. The adaptive pathway to later risk accords with current concepts in evolutionary developmental biology, especially those concerning parental effects. Outside the normal range, effects on development can result in nonadaptive processes, and we review their underlying mechanisms and consequences. New concepts concerning the underlying epigenetic and other mechanisms involved in both disruptive and nondisruptive pathways to disease are reviewed, including the evidence for transgenerational passage of risk from both maternal and paternal lines. These concepts have wider implications for understanding the causes and possible prevention of NCDs such as type 2 diabetes and cardiovascular disease, for broader social policy and for the increasing attention paid in public health to the lifecourse approach to NCD prevention.

891 citations

Journal ArticleDOI
08 Feb 2017-BMJ
TL;DR: Increased prepregnancy maternal insulin resistance and accompanying hyperinsulinemia, inflammation, and oxidative stress seem to contribute to early placental and fetal dysfunction in obese women.
Abstract: Obesity is the most common medical condition in women of reproductive age. Obesity during pregnancy has short term and long term adverse consequences for both mother and child. Obesity causes problems with infertility, and in early gestation it causes spontaneous pregnancy loss and congenital anomalies. Metabolically, obese women have increased insulin resistance in early pregnancy, which becomes manifest clinically in late gestation as glucose intolerance and fetal overgrowth. At term, the risk of cesarean delivery and wound complications is increased. Postpartum, obese women have an increased risk of venous thromboembolism, depression, and difficulty with breast feeding. Because 50-60% of overweight or obese women gain more than recommended by Institute of Medicine gestational weight guidelines, postpartum weight retention increases future cardiometabolic risks and prepregnancy obesity in subsequent pregnancies. Neonates of obese women have increased body fat at birth, which increases the risk of childhood obesity. Although there is no unifying mechanism responsible for the adverse perinatal outcomes associated with maternal obesity, on the basis of the available data, increased prepregnancy maternal insulin resistance and accompanying hyperinsulinemia, inflammation, and oxidative stress seem to contribute to early placental and fetal dysfunction. We will review the pathophysiology underlying these data and try to shed light on the specific underlying mechanisms.

669 citations

Journal ArticleDOI
13 Aug 2013-BMJ
TL;DR: Maternal obesity is associated with an increased risk of premature death in adult offspring, and strategies to optimise weight before pregnancy are urgently required.
Abstract: Objectives To determine whether maternal obesity during pregnancy is associated with increased mortality from cardiovascular events in adult offspring. Design Record linkage cohort analysis. Setting Birth records from the Aberdeen Maternity and Neonatal databank linked to the General Register of Deaths, Scotland, and the Scottish Morbidity Record systems. Population 37 709 people with birth records from 1950 to present day. Main outcome measures Death and hospital admissions for cardiovascular events up to 1 January 2012 in offspring aged 34-61. Maternal body mass index (BMI) was calculated from height and weight measured at the first antenatal visit. The effect of maternal obesity on outcomes in offspring was tested with time to event analysis with Cox proportional hazard regression to compare outcomes in offspring of mothers in underweight, overweight, or obese categories of BMI compared with offspring of women with normal BMI. Results All cause mortality was increased in offspring of obese mothers (BMI >30) compared with mothers with normal BMI after adjustment for maternal age at delivery, socioeconomic status, sex of offspring, current age, birth weight, gestation at delivery, and gestation at measurement of BMI (hazard ratio 1.35, 95% confidence interval 1.17 to 1.55). In adjusted models, offspring of obese mothers also had an increased risk of hospital admission for a cardiovascular event (1.29, 1.06 to 1.57) compared with offspring of mothers with normal BMI. The offspring of overweight mothers also had a higher risk of adverse outcomes. Conclusions Maternal obesity is associated with an increased risk of premature death in adult offspring. As one in five women in the United Kingdom is obese at antenatal booking, strategies to optimise weight before pregnancy are urgently required.

460 citations

Journal ArticleDOI
TL;DR: The scientific goal is to elucidate obesity pathogenesis so as to better inform treatment, public policy, advocacy, and awareness of obesity in ways that ultimately diminish its public health and economic consequences.
Abstract: Obesity is among the most common and costly chronic disorders worldwide. Estimates suggest that in the United States obesity affects one-third of adults, accounts for up to one-third of total mortality, is concentrated among lower income groups, and increasingly affects children as well as adults. A lack of effective options for long-term weight reduction magnifies the enormity of this problem; individuals who successfully complete behavioral and dietary weight-loss programs eventually regain most of the lost weight. We included evidence from basic science, clinical, and epidemiological literature to assess current knowledge regarding mechanisms underlying excess body-fat accumulation, the biological defense of excess fat mass, and the tendency for lost weight to be regained. A major area of emphasis is the science of energy homeostasis, the biological process that maintains weight stability by actively matching energy intake to energy expenditure over time. Growing evidence suggests that obesity is a disorder of the energy homeostasis system, rather than simply arising from the passive accumulation of excess weight. We need to elucidate the mechanisms underlying this "upward setting" or "resetting" of the defended level of body-fat mass, whether inherited or acquired. The ongoing study of how genetic, developmental, and environmental forces affect the energy homeostasis system will help us better understand these mechanisms and are therefore a major focus of this statement. The scientific goal is to elucidate obesity pathogenesis so as to better inform treatment, public policy, advocacy, and awareness of obesity in ways that ultimately diminish its public health and economic consequences.

416 citations

Journal ArticleDOI
TL;DR: Currently available literature that demonstrates a relationship between DNA methylation and environmental exposures includes studies on aflatoxin B1, air pollution, arsenic, bisphenol A, cadmium, chromium, lead, mercury, polycyclic aromatic hydrocarbons, persistent organic pollutants, tobacco smoke, and nutritional factors are summarized.
Abstract: DNA methylation is the most well studied of the epigenetic regulators in relation to environmental exposures. To date, numerous studies have detailed the manner by which DNA methylation is influenced by the environment, resulting in altered global and gene-specific DNA methylation. These studies have focused on prenatal, early-life, and adult exposure scenarios. The present review summarizes currently available literature that demonstrates a relationship between DNA methylation and environmental exposures. It includes studies on aflatoxin B1, air pollution, arsenic, bisphenol A, cadmium, chromium, lead, mercury, polycyclic aromatic hydrocarbons, persistent organic pollutants, tobacco smoke, and nutritional factors. It also addresses gaps in the literature and future directions for research. These gaps include studies of mixtures, sexual dimorphisms with respect to environmentally associated methylation changes, tissue specificity, and temporal stability of the methylation marks.

390 citations


Cites background from "Epigenetic Gene Promoter Methylatio..."

  • ...In addition to H19/IGF2, retinoid X receptor alpha (RXR-α) appears to be modified in association with maternal folate intake during the prenatal period (60), which is of key interest because RXR-α is known to play a role in later-life obesity and metabolic disorders....

    [...]

References
More filters
Journal ArticleDOI
08 Oct 2009-Nature
TL;DR: This paper examined potential sources of missing heritability and proposed research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.
Abstract: Genome-wide association studies have identified hundreds of genetic variants associated with complex human diseases and traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively small increments in risk, and explain only a small proportion of familial clustering, leading many to question how the remaining, 'missing' heritability can be explained. Here we examine potential sources of missing heritability and propose research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.

7,797 citations


"Epigenetic Gene Promoter Methylatio..." refers background in this paper

  • ...Genome-wide association studies suggest that fixed genetic variation makes a relatively small contribution to risk of obesity, heart disease, and diabetes (1,2); our findings raise the possibility that the developmental environment component may be equally or more important....

    [...]

  • ...Diabetes 60:1528–1534, 2011 Fixed genomic variations explain only a fraction of the risk of human obesity and metabolic disease (1,2)....

    [...]

Journal ArticleDOI
TL;DR: Evidence from several disciplines is synthesized to support the contention that environmental factors acting during development should be accorded greater weight in models of disease causation.
Abstract: Many lines of evidence, including epidemiologic data and extensive clinical and experimental studies, indicate that early life events play a powerful role in influencing later susceptibility to certain chronic diseases. This review synthesizes evidence from several disciplines to support the contention that environmental factors acting during development should be accorded greater weight in models of disease causation.

3,290 citations


"Epigenetic Gene Promoter Methylatio..." refers background in this paper

  • ...Many epidemiological studies have shown associations between fetal development, through the proxy measure of birth size, and later adiposity and metabolic function (3,4), but the developmental contribution to such phenotypic characteristics has remained uncertain and controversial....

    [...]

  • ...Although epigenetic processes operating in early development have been implicated in the origins of obesity (3,11), there is as yet no direct evidence for this proposition in humans....

    [...]

  • ...However, there is increasing epidemiological evidence linking perinatal factors to later adiposity and metabolic disease risk (3,4)....

    [...]

Journal ArticleDOI
TL;DR: This article reports that the magazine's award for Research Leader of the Year was given to the Wellcome Trust Case Control Consortium which conducted a huge genetic study to look at the genetic causes for various diseases.
Abstract: This article reports that the magazine's award for Research Leader of the Year was given to the Wellcome Trust Case Control Consortium which conducted a huge genetic study to look at the genetic causes for various diseases. Their research will enable physicians to calculate the chances of a patient developing a disease that was inherited. The goal of the project is to have a patient submit a blood sample so treatment and prevention can be personalized to the patient's genetic makeup.

2,895 citations

Journal ArticleDOI
TL;DR: It is shown that individuals who were prenatally exposed to famine during the Dutch Hunger Winter in 1944–45 had, 6 decades later, less DNA methylation of the imprinted IGF2 gene compared with their unexposed, same-sex siblings.
Abstract: Extensive epidemiologic studies have suggested that adult disease risk is associated with adverse environmental conditions early in development. Although the mechanisms behind these relationships are unclear, an involvement of epigenetic dysregulation has been hypothesized. Here we show that individuals who were prenatally exposed to famine during the Dutch Hunger Winter in 1944-45 had, 6 decades later, less DNA methylation of the imprinted IGF2 gene compared with their unexposed, same-sex siblings. The association was specific for periconceptional exposure, reinforcing that very early mammalian development is a crucial period for establishing and maintaining epigenetic marks. These data are the first to contribute empirical support for the hypothesis that early-life environmental conditions can cause epigenetic changes in humans that persist throughout life.

2,723 citations


"Epigenetic Gene Promoter Methylatio..." refers background in this paper

  • ...In vitro fertilization increases risk of imprinting disorders (44), and methylation effects on imprinted genes have been reported in offspring of mothers exposed to famine during various periods of pregnancy (45,46), but with no associations with phenotype reported....

    [...]

Journal ArticleDOI
TL;DR: MethPrimer, based on Primer 3, is a program for designing PCR primers for methylation mapping that takes a DNA sequence as its input and searches the sequence for potential CpG islands, and picks primers around the predicted C pG islands or around regions specified by users.
Abstract: Motivation: DNA methylation is an epigenetic mechanism of gene regulation. Bisulfite- conversion-based PCR methods, such as bisulfite sequencing PCR (BSP) and methylation specific PCR (MSP), remain the most commonly used techniques for methylation mapping. Existing primer design programs developed for standard PCR cannot handle primer design for bisulfite-conversion-based PCRs due to changes in DNA sequence context caused by bisulfite treatment and many special constraints both on the primers and the region to be amplified for such experiments. Therefore, the present study was designed to develop a program for such applications. Results: MethPrimer, based on Primer3, is a program for designing PCR primers for methylation mapping. It first takes a DNA sequence as its input and searches the sequence for potential CpG islands. Primers are then picked around the predicted CpG islands or around regions specified by users. MethPrimer can design primers for BSP and MSP. Results of primer selection are delivered through a web browser in text and in graphic view. Availability: MethPrimer is freely accessible at the following Web address http://itsa.ucsf.edu/∼urolab/methprimer

2,378 citations