scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Epigenetics, microRNA and Metabolic Syndrome: A Comprehensive Review

10 May 2021-International Journal of Molecular Sciences (Multidisciplinary Digital Publishing Institute)-Vol. 22, Iss: 9, pp 5047
TL;DR: In this article, a review on how both the classical and microRNA-regulated epigenetic changes are associated with the pathophysiology of metabolic syndrome is presented, focusing on the various aspects of epigenetic-based strategies used to modify MetS outcomes, including epigenetic diet, epigenetic drugs, epigenome editing tools and miRNA-based therapies.
Abstract: Epigenetics refers to the DNA chemistry changes that result in the modification of gene transcription and translation independently of the underlying DNA coding sequence. Epigenetic modifications are reported to involve various molecular mechanisms, including classical epigenetic changes affecting DNA methylation and histone modifications and small RNA-mediated processes, particularly that of microRNAs. Epigenetic changes are reversible and are closely interconnected. They are recognised to play a critical role as mediators of gene regulation, and any alteration in these mechanisms has been identified to mediate various pathophysiological conditions. Moreover, genetic predisposition and environmental factors, including dietary alterations, lifestyle or metabolic status, are identified to interact with the human epigenome, highlighting the importance of epigenetic factors as underlying processes in the aetiology of various diseases such as MetS. This review will reflect on how both the classical and microRNA-regulated epigenetic changes are associated with the pathophysiology of metabolic syndrome. We will then focus on the various aspects of epigenetic-based strategies used to modify MetS outcomes, including epigenetic diet, epigenetic drugs, epigenome editing tools and miRNA-based therapies.
Citations
More filters
Journal ArticleDOI
01 Jan 2022
TL;DR: In this article , the first generation "insulin sensitizer" pioglitazone and molecules based on its structure suggests that it is possible to decouple body weight from the metabolic dysfunction that drives adverse outcomes.
Abstract: Chronic disease appears connected to obesity. However, evidence suggests that chronic metabolic diseases are more specifically related to adipose dysfunction rather than to body weight itself.Further study of the first generation "insulin sensitizer" pioglitazone and molecules based on its structure suggests that is possible to decouple body weight from the metabolic dysfunction that drives adverse outcomes. The growing understanding of the mechanism of action of these agents together with advances in the pathophysiology of chronic metabolic disease offers a new approach to treat chronic conditions, such as type 2 diabetes, fatty liver disease, and their common organ and vascular sequelae.We hypothesize that treating adipocyte dysfunction with new insulin sensitizers might significantly impact the interface of infectious disease and chronic metabolic disease.

11 citations

Journal ArticleDOI
TL;DR: The metabolic syndrome (MetS) consists of a cluster of metabolic abnormalities including central obesity, insulin resistance, glucose intolerance, hypertension, and atherogenic dyslipidemia as mentioned in this paper.
Abstract: The metabolic syndrome (MetS) consists of a cluster of metabolic abnormalities including central obesity, insulin resistance, glucose intolerance, hypertension, and atherogenic dyslipidemia [...].

10 citations

Journal ArticleDOI
TL;DR: This review discusses the recent preclinical and clinical findings, and up-to-date meta-analysis from Randomized Controlled Trials regarding the effects of curcumin on MS, as well as the metabonomics and a pharma-metabolomics outlook consideringCurcumin metabolites, the gut microbiome, and environment for a complementary personalized prevention and treatment for MS management.
Abstract: The metabolic syndrome (MS) is a multifactorial syndrome associated with a significant economic burden and healthcare costs. MS management often requires multiple treatments (polydrug) to ameliorate conditions such as diabetes mellitus, insulin resistance, obesity, cardiovascular diseases, hypertension, and non-alcoholic fatty liver disease (NAFLD). However, various therapeutics and possible drug-drug interactions may also increase the risk of MS by altering lipid and glucose metabolism and promoting weight gain. In addition, the medications cause side effects such as nausea, flatulence, bloating, insomnia, restlessness, asthenia, palpitations, cardiac arrhythmias, dizziness, and blurred vision. Therefore, is important to identify and develop new safe and effective agents based on a multi-target approach to treat and manage MS. Natural products, such as curcumin, have multi-modalities to simultaneously target several factors involved in the development of MS. This review discusses the recent preclinical and clinical findings, and up-to-date meta-analysis from Randomized Controlled Trials regarding the effects of curcumin on MS, as well as the metabonomics and a pharma-metabolomics outlook considering curcumin metabolites, the gut microbiome, and environment for a complementary personalized prevention and treatment for MS management.

8 citations

Journal ArticleDOI
TL;DR: The definition of metabolic syndrome (MetS) has undergone several changes over the years due to the difficulty in establishing universal criteria for it as discussed by the authors , and it has been observed that the predisposition to metabolic syndrome is modulated by complex interactions between human microbiota, genetic factors and diet.
Abstract: The definition of metabolic syndrome (MetS) has undergone several changes over the years due to the difficulty in establishing universal criteria for it. Underlying the disorders related to MetS is almost invariably a pro-inflammatory state related to altered glucose metabolism, which could lead to elevated cardiovascular risk. Indeed, the complications closely related to MetS are cardiovascular diseases (CVDs) and type 2 diabetes (T2D). It has been observed that the predisposition to metabolic syndrome is modulated by complex interactions between human microbiota, genetic factors, and diet. This review provides a summary of the last decade of literature related to three principal aspects of MetS: (i) the syndrome’s definition and classification, pathophysiology, and treatment approaches; (ii) prediction and diagnosis underlying the biomarkers identified by means of advanced methodologies (NMR, LC/GC-MS, and LC, LC-MS); and (iii) the role of foods and food components in prevention and/or treatment of MetS, demonstrating a possible role of specific foods intake in the development of MetS.

8 citations

Journal ArticleDOI
TL;DR: In this paper , the authors performed integrative multi-omic bioinformatic analyses of published studies which reported improvements of cardiometabolic risk factors following polyphenol intake, together with genomic analyses performed using untargeted approach.

7 citations

References
More filters
Journal ArticleDOI
Gregory A. Roth1, Gregory A. Roth2, Degu Abate3, Kalkidan Hassen Abate4  +1025 moreInstitutions (333)
TL;DR: Non-communicable diseases comprised the greatest fraction of deaths, contributing to 73·4% (95% uncertainty interval [UI] 72·5–74·1) of total deaths in 2017, while communicable, maternal, neonatal, and nutritional causes accounted for 18·6% (17·9–19·6), and injuries 8·0% (7·7–8·2).

5,211 citations

Journal ArticleDOI
TL;DR: Recent advances in the understanding of miRNAs in cancer and in other diseases are described and the challenge of identifying the most efficacious therapeutic candidates is discussed and a perspective on achieving safe and targeted delivery of miRNA therapeutics is provided.
Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that can modulate mRNA expression. Insights into the roles of miRNAs in development and disease have led to the development of new therapeutic approaches that are based on miRNA mimics or agents that inhibit their functions (antimiRs), and the first such approaches have entered the clinic. This Review discusses the role of different miRNAs in cancer and other diseases, and provides an overview of current miRNA therapeutics in the clinic. In just over two decades since the discovery of the first microRNA (miRNA), the field of miRNA biology has expanded considerably. Insights into the roles of miRNAs in development and disease, particularly in cancer, have made miRNAs attractive tools and targets for novel therapeutic approaches. Functional studies have confirmed that miRNA dysregulation is causal in many cases of cancer, with miRNAs acting as tumour suppressors or oncogenes (oncomiRs), and miRNA mimics and molecules targeted at miRNAs (antimiRs) have shown promise in preclinical development. Several miRNA-targeted therapeutics have reached clinical development, including a mimic of the tumour suppressor miRNA miR-34, which reached phase I clinical trials for treating cancer, and antimiRs targeted at miR-122, which reached phase II trials for treating hepatitis. In this article, we describe recent advances in our understanding of miRNAs in cancer and in other diseases and provide an overview of current miRNA therapeutics in the clinic. We also discuss the challenge of identifying the most efficacious therapeutic candidates and provide a perspective on achieving safe and targeted delivery of miRNA therapeutics.

3,210 citations

Journal ArticleDOI
TL;DR: An update on canonical and non-canonical miRNA biogenesis pathways and various mechanisms underlying miRNA-mediated gene regulations and the current knowledge of the dynamics of miRNA action and of the secretion, transfer, and uptake of extracellular miRNAs is provided.
Abstract: MicroRNAs (miRNAs) are a class of non-coding RNAs that play important roles in regulating gene expression. The majority of miRNAs are transcribed from DNA sequences into primary miRNAs and processed into precursor miRNAs, and finally mature miRNAs. In most cases, miRNAs interact with the 3' untranslated region (3' UTR) of target mRNAs to induce mRNA degradation and translational repression. However, interaction of miRNAs with other regions, including the 5' UTR, coding sequence, and gene promoters, have also been reported. Under certain conditions, miRNAs can also activate translation or regulate transcription. The interaction of miRNAs with their target genes is dynamic and dependent on many factors, such as subcellular location of miRNAs, the abundancy of miRNAs and target mRNAs, and the affinity of miRNA-mRNA interactions. miRNAs can be secreted into extracellular fluids and transported to target cells via vesicles, such as exosomes, or by binding to proteins, including Argonautes. Extracellular miRNAs function as chemical messengers to mediate cell-cell communication. In this review, we provide an update on canonical and non-canonical miRNA biogenesis pathways and various mechanisms underlying miRNA-mediated gene regulations. We also summarize the current knowledge of the dynamics of miRNA action and of the secretion, transfer, and uptake of extracellular miRNAs.

2,538 citations

Journal ArticleDOI
TL;DR: Improvements to the database and website are described to provide more information about the quality of micro RNA gene annotations, and the cellular functions of their products, and to improve the availability of microRNA functional information.
Abstract: miRBase catalogs, names and distributes microRNA gene sequences. The latest release of miRBase (v22) contains microRNA sequences from 271 organisms: 38 589 hairpin precursors and 48 860 mature microRNAs. We describe improvements to the database and website to provide more information about the quality of microRNA gene annotations, and the cellular functions of their products. We have collected 1493 small RNA deep sequencing datasets and mapped a total of 5.5 billion reads to microRNA sequences. The read mapping patterns provide strong support for the validity of between 20% and 65% of microRNA annotations in different well-studied animal genomes, and evidence for the removal of >200 sequences from the database. To improve the availability of microRNA functional information, we are disseminating Gene Ontology terms annotated against miRBase sequences. We have also used a text-mining approach to search for microRNA gene names in the full-text of open access articles. Over 500 000 sentences from 18 542 papers contain microRNA names. We score these sentences for functional information and link them with 12 519 microRNA entries. The sentences themselves, and word clouds built from them, provide effective summaries of the functional information about specific microRNAs. miRBase is publicly and freely available at http://mirbase.org/.

2,508 citations

Journal ArticleDOI
TL;DR: The investigation into DNA methylation continues to show a rich and complex picture about epigenetic gene regulation in the central nervous system and provides possible therapeutic targets for the treatment of neuropsychiatric disorders.

2,399 citations

Trending Questions (1)
What are the epigenetic changes that occur in metabolic syndrome?

The paper discusses both classical epigenetic changes affecting DNA methylation and histone modifications, as well as small RNA-mediated processes, particularly microRNAs, that are associated with the pathophysiology of metabolic syndrome.