scispace - formally typeset
Open AccessJournal ArticleDOI

Epigenomic plasticity enables human pancreatic α to β cell reprogramming

Reads0
Chats0
TLDR
M mammalian pancreatic islet cells display cell-type-specific epigenomic plasticity, suggesting that epigenomic manipulation could provide a path to cell reprogramming and novel cell replacement-based therapies for diabetes.
Abstract
Insulin-secreting β cells and glucagon-secreting α cells maintain physiological blood glucose levels, and their malfunction drives diabetes development. Using ChIP sequencing and RNA sequencing analysis, we determined the epigenetic and transcriptional landscape of human pancreatic α, β, and exocrine cells. We found that, compared with exocrine and β cells, differentiated α cells exhibited many more genes bivalently marked by the activating H3K4me3 and repressing H3K27me3 histone modifications. This was particularly true for β cell signature genes involved in transcriptional regulation. Remarkably, thousands of these genes were in a monovalent state in β cells, carrying only the activating or repressing mark. Our epigenomic findings suggested that α to β cell reprogramming could be promoted by manipulating the histone methylation signature of human pancreatic islets. Indeed, we show that treatment of cultured pancreatic islets with a histone methyltransferase inhibitor leads to colocalization of both glucagon and insulin and glucagon and insulin promoter factor 1 (PDX1) in human islets and colocalization of both glucagon and insulin in mouse islets. Thus, mammalian pancreatic islet cells display cell-type–specific epigenomic plasticity, suggesting that epigenomic manipulation could provide a path to cell reprogramming and novel cell replacement-based therapies for diabetes.

read more

Citations
More filters
Journal ArticleDOI

Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes.

TL;DR: Analysis of transcriptomes of thousands of human islet cells from healthy and type 2 diabetic donors demonstrated the utility of the generated single-cell gene expression resource, and revealed subpopulations of α, β, and acinar cells.
Journal ArticleDOI

RNA Sequencing of Single Human Islet Cells Reveals Type 2 Diabetes Genes.

TL;DR: Single-cell RNA sequencing was used to determine the transcriptomes of 1,492 human pancreatic α, β, δ, and PP cells from non-diabetic and type 2 diabetes organ donors and identified cell-type-specific genes and pathways as well as 245 genes with disturbed expression intype 2 diabetes.
Journal ArticleDOI

Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion

TL;DR: Functional analyses demonstrated that identified candidate genes affect pancreatic β- and α-cells as Exoc3l silencing reduced exocytosis and overexpression of Cdkn1a, Pde7b and Sept9 perturbed insulin and glucagon secretion in clonal α- and β-cells, respectively.
References
More filters
Journal ArticleDOI

Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.

TL;DR: By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.
Journal ArticleDOI

Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists

TL;DR: The survey will help tool designers/developers and experienced end users understand the underlying algorithms and pertinent details of particular tool categories/tools, enabling them to make the best choices for their particular research interests.
Journal ArticleDOI

High-resolution profiling of histone methylations in the human genome.

TL;DR: High-resolution maps for the genome-wide distribution of 20 histone lysine and arginine methylations as well as histone variant H2A.Z, RNA polymerase II, and the insulator binding protein CTCF across the human genome using the Solexa 1G sequencing technology are generated.
Journal ArticleDOI

A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells

TL;DR: It is proposed that bivalent domains silence developmental genes in ES cells while keeping them poised for activation, highlighting the importance of DNA sequence in defining the initial epigenetic landscape and suggesting a novel chromatin-based mechanism for maintaining pluripotency.
Journal ArticleDOI

Evolution and functions of long noncoding RNAs

TL;DR: The evolution of long noncoding RNAs and their roles in transcriptional regulation, epigenetic gene regulation, and disease are reviewed.
Related Papers (5)