scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Epoxy clay nanocomposites ― processing, properties and applications: A review

01 Feb 2013-Composites Part B-engineering (Elsevier)-Vol. 45, Iss: 1, pp 308-320
TL;DR: A short background on the research work carried out on epoxy clay nanocomposites can be found in this paper, where the authors highlight the morphology and the final mechanical, thermal and barrier properties of the nanocomposition.
Abstract: The review renders a short background on the research work carried out on epoxy clay nanocomposites Clays are one of the ideal nano reinforcements for polymers because of their high intercalation chemistry and aspect ratio Epoxy clay nanocomposites are finding vast applications in various industries like aerospace, defense, automobile, etc The physical and chemical properties of the epoxy systems are influenced by the processing techniques, clay modifier and curing agents used for the preparation of nanocomposites The clay morphology (intercalation/exfoliation) of the nanocomposites is also depended on the above parameters So the emphasis of the present work is to highlight these parameters on morphology and the final mechanical, thermal and barrier properties of the nanocomposites The proposed applications of the epoxy clay nanocomposites are also discussed
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the synthesis, curing process, and application of epoxy resins are reviewed and a review of the final properties of cured epoxide resins is presented. But, the authors do not consider the type of epoxide resin, curing agent, and curing process.

1,132 citations

Journal ArticleDOI
Shao-Yun Fu1, Zheng Sun1, Pei Huang1, Yuan-Qing Li1, Ning Hu1 
01 Mar 2019
TL;DR: In this paper, the three basic aspects of processing, characterization and properties of polymer nanocomposites are critically reviewed in a review, and the effects of nanofiller type, dispersion and contents are discussed in some details.
Abstract: Polymer nanocomposites have been investigated for about three decades. To get deep insights into the modifying effects of various nanofillers on mechanical and physical properties of polymer nanocomposites, the three basic aspects of processing, characterization and properties are critically reviewed in this paper. Nanofillers can be classified into three major types of two-dimensional (2D) layered, one-dimensional (1D) fibrous and zero-dimensional (0D) spherical ones and this review thus discusses in detail the processing, characterization and properties of the three types of polymer nanocomposites. It starts with an introduction of various nanoscale fillers such as two-dimensional (2D) nano-clay, graphene and MXene, one dimensional (1D) carbon nanofibers and nanotubes, zero dimensional (0D) silica nanoparticles and ZnO quantum dots as well as nanofiller-polymer interfaces. The processing of these polymer nanocomposites using different methods and the characterization of nanofillers and polymer nanocomposites using various techniques are described. Finally, the mechanical and physical properties of these polymer nanocomposites are discussed by considering the effects of nanofiller type, dispersion and contents; also, interface properties show significant effects on the mechanical properties of polymer nanocomposites and are discussed in some details.

419 citations

Journal ArticleDOI
TL;DR: The state-of-the-art multifunctional epoxy nanocomposites with magnetic, electrically conductive, thermally conductive and flame retardant properties of the past few years are reviewed in this article.
Abstract: Epoxy is a crucial engineered thermosetting polymer with wide industrial applications in adhesive, electronics, aerospace and marine systems In this review, basic knowledge of epoxy resins and the challenge for the preparation of epoxy nanocomposites are summarized The state-of-art multifunctional epoxy nanocomposites with magnetic, electrically conductive, thermally conductive, and flame retardant properties of the past few years are critically reviewed with detailed examples The applications of epoxy nanocomposites in aerospace, automotives, anti-corrosive coatings, and high voltage fields are briefly summarized This knowledge will have great impact on the field and will facilitate researchers in seeking new functions and applications of epoxy resins in the future

344 citations

Journal ArticleDOI
TL;DR: A survey of the literature on extending performance of epoxy resins based on carbon nanomaterials is presented in this article, where the structure-performance relationships for different carbon-nome material modified epoxy are closely analyzed.
Abstract: Carbon nanomaterials are receiving worldwide attention because of their multi-faceted superiority in thermal conductivity, flame retardancy, mechanical stability, electrical conductivity, and biocompatibility. In this review, a survey of the literature on extending performance of epoxy resins based on carbon nanomaterials is presented. The structure-performance relationships for different carbon nanomaterials modified epoxy are closely analyzed. The performance extension in mechanical, electrical, thermal conductivity, flame retardancy, antidegradation, and tribological properties of epoxy are reviewed in detail. Other application areas including biocompatibility, biodegradability, gas barrier properties, shape memory, and electromagnetic interference shielding are touched. The challenges and opportunities in carbon nanomaterials functionalized epoxy composites are also discussed.

309 citations

Journal ArticleDOI
TL;DR: In this paper, a phase field approach is employed to model fracture in the matrix and the interphase zone of the polymeric nanocomposites (PNCs) while the stiff clay platelets are considered as linear elastic material.

251 citations

References
More filters
Book
01 Jan 1985
TL;DR: In this paper, the authors describe a chain transfer characterisation of polymers charge-transfer complexes, charge transfer complexes and charge transfer complexes of charge transfer and charge-Transfer complexes.
Abstract: Cellular Materials Cellulose Cellulose, Biosynthesis Cellulose, Graft Copolymers Cellulose, Microcrystalline Cellulose Derivatives Cellulose Esters, Inorganic Cellulose Esters, Organic Cellulose Ethers Cement Additives Chain-Reaction Polymerization Chain Transfer Characterization of Polymers Charge-Transfer Complexes Chelate- Forming Polymers Chemical Analysis Chemically Resistant Polymers Chitin Chloroprene Polymers Chlorotrifluorethylene Polymers Chromatography Classification of Polymerization Reactions Coating Methods Coatings Coatings, Electrodeposition Cold Forming.

7,256 citations

Journal ArticleDOI
TL;DR: A review of the academic and industrial aspects of the preparation, characterization, materials properties, crystallization behavior, melt rheology, and processing of polymer/layered silicate nanocomposites is given in this article.

6,343 citations


"Epoxy clay nanocomposites ― process..." refers methods in this paper

  • ...In situ polymersiation technique has been used for the preparation of nanocomposites based on polyamide (PA) [30], poly(e-caprolactone) [41], polystyrene (PS) [42], polyolefien (PP and PE) [43–45] polyethylene terephthalate (PET) [46], epoxy [6,10]....

    [...]

Journal ArticleDOI
TL;DR: In this article, a review of polymer-layered silicate nanocomposites is presented, where the polymer chains are sandwiched in between silicate layers and exfoliated layers are more or less uniformly dispersed in the polymer matrix.
Abstract: This review aims at reporting on very recent developments in syntheses, properties and (future) applications of polymer-layered silicate nanocomposites. This new type of materials, based on smectite clays usually rendered hydrophobic through ionic exchange of the sodium interlayer cation with an onium cation, may be prepared via various synthetic routes comprising exfoliation adsorption, in situ intercalative polymerization and melt intercalation. The whole range of polymer matrices is covered, i.e. thermoplastics, thermosets and elastomers. Two types of structure may be obtained, namely intercalated nanocomposites where the polymer chains are sandwiched in between silicate layers and exfoliated nanocomposites where the separated, individual silicate layers are more or less uniformly dispersed in the polymer matrix. This new family of materials exhibits enhanced properties at very low filler level, usually inferior to 5 wt.%, such as increased Young’s modulus and storage modulus, increase in thermal stability and gas barrier properties and good flame retardancy.

5,901 citations


"Epoxy clay nanocomposites ― process..." refers background in this paper

  • ...In general, the longer the surfactant chain length, the more will be the d spacing of the clay layers [9]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a new, versatile and environmentally benign synthesis approach by polymer melt intercalation is discussed. But, unlike in-situ polymerization and solution inter-calation, melt interalation involves mixing the layered silicates with the polymer and heating the mixture above the softening point of the polymer.
Abstract: Polymer nanocomposites with layered silicates as the inorganic phase (reinforcement) are discussed. The materials design and synthesis rely on the ability of layered silicates to intercalate in the galleries between their layers a wide range of monomers and polymers. Special emphasis is placed on a new, versatile and environmentally benign synthesis approach by polymer melt intercalation. In contrast to in-situ polymerization and solution intercalation, melt intercalation involves mixing the layered silicate with the polymer and heating the mixture above the softening point of the polymer. Compatibility with various polymers is accomplished by derivatizing the silicates with alkyl ammonium cations via an ion exchange reaction. By fine-tuning the surface characteristics nanodispersion (i. e. intercalation or delamination) can be accomplished. The resulting polymer layered silicate (PLS) nanocomposites exhibit properties dramatically different from their more conventional counterparts. For example, PLS nanocomposites can attain a particular degree of stiffness, strength and barrier properties with far less inorganic content than comparable glass- or mineral reinforced polymers and, therefore, they are far lighter in weight. In addition, PLS nanocomposites exhibit significant increase in thermal stability as well as self-extinguishing characteristics. The combination of improved properties, convenient processing and low cost has already led to a few commercial applications with more currently under development.

3,468 citations

Journal ArticleDOI
TL;DR: In this paper, the properties of nylon 6-clay hybrids, such as molecular composites of nylon and silicate layers of montmorillonite and saponite, NCH's and NCHP's, respectively, have been synthesized.
Abstract: Various nylon 6-clay hybrids, such as molecular composites of nylon 6 and silicate layers of montmorillonite and saponite, NCH's and NCHP's, respectively, have been synthesized. To estimate the mechanical properties of these hybrids, tensile, flexural, impact, and heat distortion tests were carried out. NCH was found superior in strength and modulus and comparable in impact strength to nylon 6. The heat distortion temperature (HDT) of NCH (montmorillonite: 4.7 wt. %) was 152 °C, which was 87 °C higher than that of nylon 6. In NCHP, saponite had a smaller effect on the increase of these mechanical properties. The modulus and HDT of NCH and NCHP increased with an increase in the amount of clay minerals. It was found that these properties were well described by the contribution of the constrained region calculated from the storage and loss modulus at the glass transition temperature. According to the mixing law on elastic modulus, the following expression was obtained between the modulus E at 120 °C and the fraction of the constrained region C, En = Ecn = C, where the values of n and Ec (modulus of the constrained region) were 0.685 and 1.02 GPa, respectively.

2,492 citations