scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Equilibration and order in quantum Floquet matter

01 May 2017-Nature Physics (Nature Research)-Vol. 13, Iss: 5, pp 424-428
TL;DR: In the past decade, remarkable progress in the physics of closed quantum systems away from equilibrium, culminating in the recent experimental realization of so-called time crystals, has been made as discussed by the authors.
Abstract: Over the past decade, remarkable progress has occurred in the physics of closed quantum systems away from equilibrium, culminating in the recent experimental realization of so-called time crystals. This Progress Article surveys these developments.
Citations
More filters
Journal ArticleDOI
TL;DR: This review summarizes recent developments in realizing band structures with geometrical and topological features in experiments on cold atomic gases, beginning with a summary of the key concepts of geometry and topology for Bloch bands.
Abstract: There have been significant recent advances in realizing band structures with geometrical and topological features in experiments on cold atomic gases. This review summarizes these developments, beginning with a summary of the key concepts of geometry and topology for Bloch bands. Descriptions are given of the different methods that have been used to generate these novel band structures for cold atoms and of the physical observables that have allowed their characterization. The focus is on the physical principles that underlie the different experimental approaches, providing a conceptual framework within which to view these developments. Also described is how specific experimental implementations can influence physical properties. Moving beyond single-particle effects, descriptions are given of the forms of interparticle interactions that emerge when atoms are subjected to these energy bands and of some of the many-body phases that may be sought in future experiments.

685 citations


Cites background from "Equilibration and order in quantum ..."

  • ...A striking example of such a “Floquet MBL” phase is the Floquet time crystal (Moessner and Sondhi, 2017)....

    [...]

Journal ArticleDOI
TL;DR: In this article, a coherent framework of topological phases of non-Hermitian Hamiltonians was developed, and the K-theory was applied to systematically classify all the topology phases in the Altland-Zirnbauer classes in all dimensions.
Abstract: Recent experimental advances in controlling dissipation have brought about unprecedented flexibility in engineering non-Hermitian Hamiltonians in open classical and quantum systems. A particular interest centers on the topological properties of non-Hermitian systems, which exhibit unique phases with no Hermitian counterparts. However, no systematic understanding in analogy with the periodic table of topological insulators and superconductors has been achieved. In this paper, we develop a coherent framework of topological phases of non-Hermitian systems. After elucidating the physical meaning and the mathematical definition of non-Hermitian topological phases, we start with one-dimensional lattices, which exhibit topological phases with no Hermitian counterparts and are found to be characterized by an integer topological winding number even with no symmetry constraint, reminiscent of the quantum Hall insulator in Hermitian systems. A system with a nonzero winding number, which is experimentally measurable from the wave-packet dynamics, is shown to be robust against disorder, a phenomenon observed in the Hatano-Nelson model with asymmetric hopping amplitudes. We also unveil a novel bulk-edge correspondence that features an infinite number of (quasi-)edge modes. We then apply the K-theory to systematically classify all the non-Hermitian topological phases in the Altland-Zirnbauer classes in all dimensions. The obtained periodic table unifies time-reversal and particle-hole symmetries, leading to highly nontrivial predictions such as the absence of non-Hermitian topological phases in two dimensions. We provide concrete examples for all the nontrivial non-Hermitian AZ classes in zero and one dimensions. In particular, we identify a Z2 topological index for arbitrary quantum channels. Our work lays the cornerstone for a unified understanding of the role of topology in non-Hermitian systems.

567 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a basic introduction to the topic of many-body localization, using the simple example of a quantum spin chain that allows us to illustrate several of the properties of this phase.

547 citations

Journal ArticleDOI
TL;DR: In this paper, a coherent framework of topological phases of non-Hermitian Hamiltonians was developed, and the K-theory was applied to systematically classify all the topology phases in the Altland-Zirnbauer classes in all dimensions.
Abstract: Recent experimental advances in controlling dissipation have brought about unprecedented flexibility in engineering non-Hermitian Hamiltonians in open classical and quantum systems. A particular interest centers on the topological properties of non-Hermitian systems, which exhibit unique phases with no Hermitian counterparts. However, no systematic understanding in analogy with the periodic table of topological insulators and superconductors has been achieved. In this paper, we develop a coherent framework of topological phases of non-Hermitian systems. After elucidating the physical meaning and the mathematical definition of non-Hermitian topological phases, we start with one-dimensional lattices, which exhibit topological phases with no Hermitian counterparts and are found to be characterized by an integer topological winding number even with no symmetry constraint, reminiscent of the quantum Hall insulator in Hermitian systems. A system with a nonzero winding number, which is experimentally measurable from the wave-packet dynamics, is shown to be robust against disorder, a phenomenon observed in the Hatano-Nelson model with asymmetric hopping amplitudes. We also unveil a novel bulk-edge correspondence that features an infinite number of (quasi-)edge modes. We then apply the K-theory to systematically classify all the non-Hermitian topological phases in the Altland-Zirnbauer classes in all dimensions. The obtained periodic table unifies time-reversal and particle-hole symmetries, leading to highly nontrivial predictions such as the absence of non-Hermitian topological phases in two dimensions. We provide concrete examples for all the nontrivial non-Hermitian AZ classes in zero and one dimensions. In particular, we identify a Z2 topological index for arbitrary quantum channels. Our work lays the cornerstone for a unified understanding of the role of topology in non-Hermitian systems.

543 citations

Journal ArticleDOI
TL;DR: The struggle to observe discrete time crystals is reviewed here together with propositions that generalize this concept introducing condensed matter like physics in the time domain.
Abstract: Time crystals are time-periodic self-organized structures postulated by Frank Wilczek in 2012. While the original concept was strongly criticized, it stimulated at the same time an intensive research leading to propositions and experimental verifications of discrete (or Floquet) time crystals-the structures that appear in the time domain due to spontaneous breaking of discrete time translation symmetry. The struggle to observe discrete time crystals is reviewed here together with propositions that generalize this concept introducing condensed matter like physics in the time domain. We shall also revisit the original Wilczek's idea and review strategies aimed at spontaneous breaking of continuous time translation symmetry.

419 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a review of recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases is presented, focusing on effects beyond standard weakcoupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation.
Abstract: This paper reviews recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases. It focuses on effects beyond standard weak-coupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation. Strong correlations in fermionic gases are discussed in optical lattices or near-Feshbach resonances in the BCS-BEC crossover.

6,601 citations

Journal ArticleDOI
TL;DR: This paper gives a detailed exposition of current DMRG thinking in the MPS language in order to make the advisable implementation of the family of D MRG algorithms in exclusively MPS terms transparent.
Abstract: The density-matrix renormalization group method (DMRG) has established itself over the last decade as the leading method for the simulation of the statics and dynamics of one-dimensional strongly correlated quantum lattice systems. In the further development of the method, the realization that DMRG operates on a highly interesting class of quantum states, so-called matrix product states (MPS), has allowed a much deeper understanding of the inner structure of the DMRG method, its further potential and its limitations. In this paper, I want to give a detailed exposition of current DMRG thinking in the MPS language in order to make the advisable implementation of the family of DMRG algorithms in exclusively MPS terms transparent. I then move on to discuss some directions of potentially fruitful further algorithmic development: while DMRG is a very mature method by now, I still see potential for further improvements, as exemplified by a number of recently introduced algorithms.

2,977 citations

Journal ArticleDOI
TL;DR: The density matrix renormalization group method (DMRG) has established itself over the last decade as the leading method for the simulation of the statics and dynamics of one-dimensional strongly correlated quantum lattice systems as mentioned in this paper.

2,940 citations

Journal ArticleDOI
TL;DR: It is shown that a bounded, isolated quantum system of many particles in a specific initial state will approach thermal equilibrium if the energy eigenfunctions which are superposed to form that state obey Berry's conjecture, and argued that these results constitute a sound foundation for quantum statistical mechanics.
Abstract: We show that a bounded, isolated quantum system of many particles in a specific initial state will approach thermal equilibrium if the energy eigenfunctions which are superposed to form that state obey Berry's conjecture. Berry's conjecture is expected to hold only if the corresponding classical system is chaotic, and essentially states that the energy eigenfunctions behave as if they were Gaussian random variables. We review the existing evidence, and show that previously neglected effects substantially strengthen the case for Berry's conjecture. We study a rarefied hard-sphere gas as an explicit example of a many-body system which is known to be classically chaotic, and show that an energy eigenstate which obeys Berry's conjecture predicts a Maxwell-Boltzmann, Bose-Einstein, or Fermi-Dirac distribution for the momentum of each constituent particle, depending on whether the wave functions are taken to be nonsymmetric, completely symmetric, or completely antisymmetric functions of the positions of the particles. We call this phenomenon eigenstate thermalization. We show that a generic initial state will approach thermal equilibrium at least as fast as O(\ensuremath{\Elzxh}/\ensuremath{\Delta})${\mathit{t}}^{\mathrm{\ensuremath{-}}1}$, where \ensuremath{\Delta} is the uncertainty in the total energy of the gas. This result holds for an individual initial state; in contrast to the classical theory, no averaging over an ensemble of initial states is needed. We argue that these results constitute a sound foundation for quantum statistical mechanics.

2,649 citations

Journal ArticleDOI
17 Apr 2008-Nature
TL;DR: It is demonstrated that a generic isolated quantum many-body system does relax to a state well described by the standard statistical-mechanical prescription, and it is shown that time evolution itself plays a merely auxiliary role in relaxation, and that thermalization instead happens at the level of individual eigenstates, as first proposed by Deutsch and Srednicki.
Abstract: It is demonstrated that an isolated generic quantum many-body system does relax to a state well described by the standard statistical mechanical prescription The thermalization happens at the level of individual eigenstates, allowing the computation of thermal averages from knowledge of any eigenstate in the microcanonical energy window An understanding of the temporal evolution of isolated many-body quantum systems has long been elusive Recently, meaningful experimental studies1,2 of the problem have become possible, stimulating theoretical interest3,4,5,6,7 In generic isolated systems, non-equilibrium dynamics is expected8,9 to result in thermalization: a relaxation to states in which the values of macroscopic quantities are stationary, universal with respect to widely differing initial conditions, and predictable using statistical mechanics However, it is not obvious what feature of many-body quantum mechanics makes quantum thermalization possible in a sense analogous to that in which dynamical chaos makes classical thermalization possible10 For example, dynamical chaos itself cannot occur in an isolated quantum system, in which the time evolution is linear and the spectrum is discrete11 Some recent studies4,5 even suggest that statistical mechanics may give incorrect predictions for the outcomes of relaxation in such systems Here we demonstrate that a generic isolated quantum many-body system does relax to a state well described by the standard statistical-mechanical prescription Moreover, we show that time evolution itself plays a merely auxiliary role in relaxation, and that thermalization instead happens at the level of individual eigenstates, as first proposed by Deutsch12 and Srednicki13 A striking consequence of this eigenstate-thermalization scenario, confirmed for our system, is that knowledge of a single many-body eigenstate is sufficient to compute thermal averages—any eigenstate in the microcanonical energy window will do, because they all give the same result

2,598 citations