scispace - formally typeset
Search or ask a question
Book

Error Control Systems for Digital Communication and Storage

01 Feb 1995-
TL;DR: This work has shown that polynomials over Galois Fields, particularly the Hadamard, Quadratic Residue, and Golay Codes, are good candidates for Error Control Coding for Digital Communication Systems.
Abstract: 1. Error Control Coding for Digital Communication Systems. 2. Galois Fields. 3. Polynomials over Galois Fields. 4. Linear Block Codes. 5. Cyclic Codes. 6. Hadamard, Quadratic Residue, and Golay Codes. 7. Reed-Muller Codes 8. BCH and Reed-Solomon Codes. 9. Decoding BCH and Reed-Solomon Codes. 10. The Analysis of the Performance of Block Codes. 11. Convolutional Codes. 12. The Viterbi Decoding Algorithm. 13. The Sequential Decoding Algorithms. 14. Trellis Coded Modulation. 15. Error Control for Channels with Feedback. 16. Applications. Appendices: A. Binary Primitive Polynomials. B. Add-on Tables and Vector Space Representations for GF(8) Through GF(1024). C. Cyclotronic Cosets Modulo 2m-1. D. Minimal Polynomials for Elements in GF (2m). E. Generator Polynomials of Binary BCH Codes of Lengths Through 511. Bibliography.
Citations
More filters
Dissertation
24 Apr 2002
TL;DR: Results show that remarkable energy and spectral efficiencies are achievable by combining concepts drawn from space-time coding, multiuser detection, array processing and iterative decoding.
Abstract: Space-time codes (STC) are a class of signaling techniques, offering coding and diversity gains along with improved spectral efficiency. These codes exploit both the spatial and the temporal diversity of the wireless link by combining the design of the error correction code, modulation scheme and array processing. STC are well suited for improving the downlink performance, which is the bottleneck in asymmetric applications such as downstream Internet. Three original contributions to the area of STC are presented in this dissertation. First, the development of analytic tools that determine the fundamental limits on the performance of STC in a variety of channel conditions. For trellis-type STC, transfer function based techniques are applied to derive performance bounds over Rayleigh, Rician and correlated fading environments. For block-type STC, an analytic framework that supports various complex orthogonal designs with arbitrary signal cardinalities and array configurations is developed. In the second part of the dissertation, the Virginia Tech Space-Time Advanced Radio (VT-STAR) is designed, introducing a multi-antenna hardware laboratory test bed, which facilitates characterization of the multiple-input multiple-output (MIMO) channel and validation of various space-time approaches. In the third part of the dissertation, two novel space-time architectures paired with iterative processing principles are proposed. The first scheme extends the suitability of STC to outdoor wireless communications by employing iterative equalization/decoding for time dispersive channels and the second scheme employs iterative interference cancellation/decoding to solve the error propagation problem of Bell-Labs Layered Space-Time Architecture (BLAST). Results show that remarkable energy and spectral efficiencies are achievable by combining concepts drawn from space-time coding, multiuser detection, array processing and iterative decoding.

2,286 citations

Journal ArticleDOI
TL;DR: It is shown that cross-layer design of these protocols is imperative to meet emerging application requirements, particularly when energy is a limited resource.
Abstract: Ad hoc wireless networks enable new and exciting applications, but also pose significant technical challenges. In this article we give a brief overview of ad hoc wireless networks and their applications with a particular emphasis on energy constraints. We then discuss advances in the link, multiple access, network, and application protocols for these networks. We show that cross-layer design of these protocols is imperative to meet emerging application requirements, particularly when energy is a limited resource.

1,057 citations

Journal ArticleDOI
TL;DR: A cross-layer design which combines adaptive modulation and coding at the physical layer with a truncated automatic repeat request protocol at the data link layer is developed in order to maximize spectral efficiency under prescribed delay and error performance constraints.
Abstract: We developed a cross-layer design which combines adaptive modulation and coding at the physical layer with a truncated automatic repeat request protocol at the data link layer, in order to maximize spectral efficiency under prescribed delay and error performance constraints. We derive the achieved spectral efficiency in closed-form for transmissions over Nakagami-m block fading channels. Numerical results reveal that retransmissions at the data link layer relieve stringent error control requirements at the physical layer, and thereby enable considerable spectral efficiency gain. This gain is comparable with that offered by diversity, provided that the maximum number of transmissions per packet equals the diversity order. Diminishing returns on spectral efficiency, that result when increasing the maximum number of retransmissions, suggest that a small number of retransmissions offers a desirable delay-throughput tradeoff, in practice.

972 citations


Cites background from "Error Control Systems for Digital C..."

  • ...An one-to-one mapping between the Ricean factor and the Nakagami fading parameter allows also Ricean channels to be well approximated by Nakagami- channels [15]....

    [...]

Journal ArticleDOI
TL;DR: This paper presents two extensions to the coded cooperation framework, which increase the diversity of coded cooperation in the fast-fading scenario via ideas borrowed from space-time codes and investigates the application of turbo codes to this framework.
Abstract: When mobiles cannot support multiple antennas due to size or other constraints, conventional space-time coding cannot be used to provide uplink transmit diversity. To address this limitation, the concept of cooperation diversity has been introduced, where mobiles achieve uplink transmit diversity by relaying each other's messages. A particularly powerful variation of this principle is coded cooperation. Instead of a simple repetition relay, coded cooperation partitions the codewords of each mobile and transmits portions of each codeword through independent fading channels. This paper presents two extensions to the coded cooperation framework. First, we increase the diversity of coded cooperation in the fast-fading scenario via ideas borrowed from space-time codes. We calculate bounds for the bit- and block-error rates to demonstrate the resulting gains. Second, since cooperative coding contains two code components, it is natural to apply turbo codes to this framework. We investigate the application of turbo codes in coded cooperation and demonstrate the resulting gains via error bounds and simulations.

956 citations


Cites background from "Error Control Systems for Digital C..."

  • ...The users segment their source data into blocks that are augmented with a cyclic redundancy check (CRC) code [16], such that there are a total of bits per source block (including the CRC bits)....

    [...]