scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Estimating historical changes in global land cover: Croplands from 1700 to 1992

01 Dec 1999-Global Biogeochemical Cycles (John Wiley & Sons, Ltd)-Vol. 13, Iss: 4, pp 997-1027
TL;DR: In this paper, the authors presented a simple approach to derive geographically explicit changes in global croplands from 1700 to 1992, by calibrating a remotely sensed land cover classification data set against cropland inventory data.
Abstract: Human activities over the last three centuries have significantly transformed the Earth's environment, primarily through the conversion of natural ecosystems to agriculture. This study presents a simple approach to derive geographically explicit changes in global croplands from 1700 to 1992. By calibrating a remotely sensed land cover classification data set against cropland inventory data, we derived a global representation of permanent croplands in 1992, at 5 min spatial resolution [Ramankutty and Foley, 1998]. To reconstruct historical croplands, we first compile an extensive database of historical cropland inventory data, at the national and subnational level, from a variety of sources. Then we use our 1992 cropland data within a simple land cover change model, along with the historical inventory data, to reconstruct global 5 min resolution data on permanent cropland areas from 1992 back to 1700. The reconstructed changes in historical croplands are consistent with the history of human settlement and patterns of economic development. By overlaying our historical cropland data set over a newly derived potential vegetation data set, we analyze our results in terms of the extent to which different natural vegetation types have been converted for agriculture. We further examine the extent to which croplands have been abandoned in different parts of the world. Our data sets could be used within global climate models and global ecosystem models to understand the impacts of land cover change on climate and on the cycling of carbon and water. Such an analysis is a crucial aid to sharpen our thinking about a sustainable future.
Citations
More filters
Journal ArticleDOI
22 Jul 2005-Science
TL;DR: Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity.
Abstract: Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fiber, water, and shelter to more than six billion people. Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity. Such changes in land use have enabled humans to appropriate an increasing share of the planet’s resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality, and ameliorate infectious diseases. We face the challenge of managing trade-offs between immediate human needs and maintaining the capacity of the biosphere to provide goods and services in the long term.

10,117 citations

Journal ArticleDOI
13 Feb 2015-Science
TL;DR: An updated and extended analysis of the planetary boundary (PB) framework and identifies levels of anthropogenic perturbations below which the risk of destabilization of the Earth system (ES) is likely to remain low—a “safe operating space” for global societal development.
Abstract: The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth system. Here, we revise and update the planetary boundary framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries—climate change and biosphere integrity—have been identified, each of which has the potential on its own to drive the Earth system into a new state should they be substantially and persistently transgressed.

7,169 citations

Journal ArticleDOI
20 Oct 2011-Nature
TL;DR: It is shown that tremendous progress could be made by halting agricultural expansion, closing ‘yield gaps’ on underperforming lands, increasing cropping efficiency, shifting diets and reducing waste, which could double food production while greatly reducing the environmental impacts of agriculture.
Abstract: Increasing population and consumption are placing unprecedented demands on agriculture and natural resources. Today, approximately a billion people are chronically malnourished while our agricultural systems are concurrently degrading land, water, biodiversity and climate on a global scale. To meet the world's future food security and sustainability needs, food production must grow substantially while, at the same time, agriculture's environmental footprint must shrink dramatically. Here we analyse solutions to this dilemma, showing that tremendous progress could be made by halting agricultural expansion, closing 'yield gaps' on underperforming lands, increasing cropping efficiency, shifting diets and reducing waste. Together, these strategies could double food production while greatly reducing the environmental impacts of agriculture.

5,954 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a synthesis of past research on the role of soil moisture for the climate system, based both on modelling and observational studies, focusing on soil moisture-temperature and soil moistureprecipitation feedbacks, and their possible modifications with climate change.

3,402 citations


Cites background from "Estimating historical changes in gl..."

  • ...…and Roderick, 2003), changes in large-scale circulation or SST patterns (e.g. Koster et al., 2009c), as well as land use changes (e.g. Haxeltine and Prentice, 1996; Ramankutty and Foley, 1999; Klein Goldewijk, 2001; Soares-Filho et al., 2006; Davin et al., 2007; Bonan, 2008; Pitman et al., 2009)....

    [...]

References
More filters
Journal ArticleDOI
25 Jul 1997-Science
TL;DR: Human alteration of Earth is substantial and growing as discussed by the authors, between one-third and one-half of the land surface has been transformed by human action; the carbon dioxide concentration in the atmosphere has increased by nearly 30 percent since the beginning of the Industrial Revolution; more atmospheric nitrogen is fixed by humanity than by all natural terrestrial sources combined; more than half of all accessible surface fresh water is put to use by humanity; and about one-quarter of the bird species on Earth have been driven to extinction.
Abstract: Human alteration of Earth is substantial and growing. Between one-third and one-half of the land surface has been transformed by human action; the carbon dioxide concentration in the atmosphere has increased by nearly 30 percent since the beginning of the Industrial Revolution; more atmospheric nitrogen is fixed by humanity than by all natural terrestrial sources combined; more than half of all accessible surface fresh water is put to use by humanity; and about one-quarter of the bird species on Earth have been driven to extinction. By these and other standards, it is clear that we live on a human-dominated planet.

8,831 citations

Journal ArticleDOI
TL;DR: In this paper, a 1km spatial resolution land cover classification using data for 1992-1993 from the Advanced Very High Resolution Radiometer (AVHRR) is presented. But the approach taken involved a hierarchy of pair-wise class trees where a logic based on vegetation form was applied until all classes were depicted.
Abstract: This paper on reports the production of a 1km spatial resolution land cover classie cation using data for 1992- 1993 from the Advanced Very High Resolution Radiometer (AVHRR). This map will be included as an at-launch product of the Moderate Resolution Imaging Spectroradiometer (MODIS) to serve as an input for several algorithms requiring knowledge of land cover type. The methodology was derived from a similar e A ort to create a product at 8km spatial resolution, where high resolution data sets were interpreted in order to derive a coarse-resolution training data set. A set of 37294 O 1km pixels was used within a hierarchical tree structure to classify the AVHRR data into 12 classes. The approach taken involved a hierarchy of pair-wise class trees where a logic based on vegetation form was applied until all classes were depicted. Multi- temporal AVHRR metrics were used to predict class memberships. Minimum annual red ree ectance, peak annual Normalized Di A erence Vegetation Index (NDVI), and minimum channel three brightness temperature were among the most used metrics. Depictions of forests and woodlands, and areas of mechanized agriculture are in general agreement with other sources of information, while classes such as low biomass agriculture and high-latitude broadleaf forest are not. Comparisons of the e nal product with regional digital land cover maps derived from high-resolution remotely sensed data reveal general agreement, except for apparently poor depictions of temperate pastures within areas of agriculture. Distinguishing between forest and non-forest was achieved with agreements ran- ging from 81 to 92% for these regional subsets. The agreements for all classes varied from an average of 65% when viewing all pixels to an average of 82% when viewing only those 1km pixels consisting of greater than 90% one class within the high-resolution data sets.

2,188 citations

Journal ArticleDOI
20 May 1993-Nature
TL;DR: In this paper, a process-based model was used to estimate global patterns of net primary production and soil nitrogen cycling for contemporary climate conditions and current atmospheric CO2 concentration, with most of the production attributable to tropical evergreen forest.
Abstract: A process-based model was used to estimate global patterns of net primary production and soil nitrogen cycling for contemporary climate conditions and current atmospheric CO2 concentration. Over half of the global annual net primary production was estimated to occur in the tropics, with most of the production attributable to tropical evergreen forest. The effects of CO2 doubling and associated climate changes were also explored. The responses in tropical and dry temperate ecosystems were dominated by CO2, but those in northern and moist temperate ecosystems reflected the effects of temperature on nitrogen availability.

1,929 citations

Journal ArticleDOI
09 Feb 1996-Science
TL;DR: In this paper, the authors show that increased use of evapotranspiration will confer minimal benefits globally because most land suitable for rain-fed agriculture is already in production. And they also show that new dam construction could increase accessible runoff by about 10 percent over the next 30 years, whereas population is projected to increase by more than 45 percent during that period.
Abstract: Humanity now uses 26 percent of total terrestrial evapotranspiration and 54 percent of runoff that is geographically and temporally accessible. Increased use of evapotranspiration will confer minimal benefits globally because most land suitable for rain-fed agriculture is already in production. New dam construction could increase accessible runoff by about 10 percent over the next 30 years, whereas population is projected to increase by more than 45 percent during that period.

1,355 citations

Journal ArticleDOI
TL;DR: The Integrated Biosphere Simulator (IBIS) as mentioned in this paper is a terrestrial biosphere model that integrates a wide range of biophysical, physiological, and ecological processes in a single, physically consistent modeling framework.
Abstract: Here we present a new terrestrial biosphere model (the Integrated Biosphere Simulator - IBIS) which demonstrates how land surface biophysics, terrestrial carbon fluxes, and global vegetation dynamics can be represented in a single, physically consistent modeling framework. In order to integrate a wide range of biophysical, physiological, and ecological processes, the model is designed around a hierarchical, modular structure and uses a common state description throughout. First, a coupled simulation of the surface water, energy, and carbon fluxes is performed on hourly timesteps and is integrated over the year to estimate the annual water and carbon balance. Next, the annual carbon balance is used to predict changes in the leaf area index and biomass for each of nine plant functional types, which compete for light and water using different ecological strategies. The resulting patterns of annual evapotranspiration, runoff, and net primary productivity are in good agreement with observations. In addition, the model simulates patterns of vegetation dynamics that qualitatively agree with features of the natural process of secondary succession. Comparison of the model's inferred near-equilibrium vegetation categories with a potential natural vegetation map shows a fair degree of agreement. This integrated modeling framework provides a means of simulating both rapid biophysical processes and long-term ecosystem dynamics that can be directly incorporated within atmospheric models.

1,233 citations