scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Estimation of standby leakage power in CMOS circuits considering accurate modeling of transistor stacks

10 Aug 1998-pp 239-244
TL;DR: Results on a large number of benchmarks indicate that proper input selection can reduce the standby leakage power by more than 50% for some circuits.
Abstract: Low supply voltage requires the device threshold to be reduced in order to maintain performance. Due to the exponential relationship between leakage current and threshold voltage in the weak inversion region, leakage power can no longer be ignored. In this paper we present a technique to accurately estimate leakage power by accurately modeling the leakage current in transistor stacks. The standby leakage current model has been verified by IISPICE. We demonstrate that the dependence of leakage power on primary input combinations can be accounted for by this model. Based on our analysis we can determine good bounds for leakage power in the standby mode. As a by-product of this analysis, we can also determine the set of input vectors which can put the circuits in the low-power standby mode. Results on a large number of benchmarks indicate that proper input selection can reduce the standby leakage power by more than 50% for some circuits.
Citations
More filters
Journal ArticleDOI
29 Apr 2003
TL;DR: Channel engineering techniques including retrograde well and halo doping are explained as means to manage short-channel effects for continuous scaling of CMOS devices and different circuit techniques to reduce the leakage power consumption are explored.
Abstract: High leakage current in deep-submicrometer regimes is becoming a significant contributor to power dissipation of CMOS circuits as threshold voltage, channel length, and gate oxide thickness are reduced. Consequently, the identification and modeling of different leakage components is very important for estimation and reduction of leakage power, especially for low-power applications. This paper reviews various transistor intrinsic leakage mechanisms, including weak inversion, drain-induced barrier lowering, gate-induced drain leakage, and gate oxide tunneling. Channel engineering techniques including retrograde well and halo doping are explained as means to manage short-channel effects for continuous scaling of CMOS devices. Finally, the paper explores different circuit techniques to reduce the leakage power consumption.

2,281 citations


Cites background or methods from "Estimation of standby leakage power..."

  • ...analysis of the subthreshold leakage through a stack of n transistor is shown in [47]....

    [...]

  • ...A more efficient way is to employ the genetic algorithm to exploit historical information to speculate on new search points with expected improved performance to find a near-optimal solution [47]....

    [...]

Proceedings ArticleDOI
01 May 2001
TL;DR: This paper discusses policies and implementations for reducing cache leakage by invalidating and “turning off” cache lines when they hold data not likely to be reused, and proposes adaptive policies that effectively reduce LI cache leakage energy by 5x for the SPEC2000 with only negligible degradations in performance.
Abstract: Power dissipation is increasingly important in CPUs ranging from those intended for mobile use, all the way up to high-performance processors for high-end servers. While the bulk of the power dissipated is dynamic switching power, leakage power is also beginning to be a concern. Chipmakers expect that in future chip generations, leakage's proportion of total chip power will increase significantly.This paper examines methods for reducing leakage power within the cache memories of the CPU. Because caches comprise much of a CPU chip's area and transistor counts, they are reasonable targets for attacking leakage. We discuss policies and implementations for reducing cache leakage by invalidating and “turning off” cache lines when they hold data not likely to be reused. In particular, our approach is targeted at the generational nature of cache line usage. That is, cache lines typically have a flurry of frequent use when first brought into the cache, and then have a period of “dead time” before they are evicted. By devising effective, low-power ways of deducing dead time, our results show that in many cases we can reduce LI cache leakage energy by 4x in SPEC2000 applications without impacting performance. Because our decay-based techniques have notions of competitive on-line algorithms at their roots, their energy usage can be theoretically bounded at within a factor of two of the optimal oracle-based policy. We also examine adaptive decay-based policies that make energy-minimizing policy choices on a per-application basis by choosing appropriate decay intervals individually for each cache line. Our proposed adaptive policies effectively reduce LI cache leakage energy by 5x for the SPEC2000 with only negligible degradations in performance.

725 citations

Book
10 Sep 2007
TL;DR: Is your memory hierarchy stopping your microprocessor from performing at the high level it should be?
Abstract: Is your memory hierarchy stopping your microprocessor from performing at the high level it should be? Memory Systems: Cache, DRAM, Disk shows you how to resolve this problem. The book tells you everything you need to know about the logical design and operation, physical design and operation, performance characteristics and resulting design trade-offs, and the energy consumption of modern memory hierarchies. You learn how to to tackle the challenging optimization problems that result from the side-effects that can appear at any point in the entire hierarchy.As a result you will be able to design and emulate the entire memory hierarchy. . Understand all levels of the system hierarchy -Xcache, DRAM, and disk. . Evaluate the system-level effects of all design choices. . Model performance and energy consumption for each component in the memory hierarchy.

659 citations

Journal ArticleDOI
Abhronil Sengupta1, Yuting Ye2, Robert Y. Wang2, Chiao Liu2, Kaushik Roy1 
TL;DR: In this paper, the authors propose a novel algorithmic technique for generating an SNN with a deep architecture, and demonstrate its effectiveness on complex visual recognition problems such as CIFAR-10 and ImageNet.
Abstract: Over the past few years, Spiking Neural Networks (SNNs) have become popular as a possible pathway to enable low-power event-driven neuromorphic hardware. However, their application in machine learning have largely been limited to very shallow neural network architectures for simple problems. In this paper, we propose a novel algorithmic technique for generating an SNN with a deep architecture, and demonstrate its effectiveness on complex visual recognition problems such as CIFAR-10 and ImageNet. Our technique applies to both VGG and Residual network architectures, with significantly better accuracy than the state-of-the-art. Finally, we present analysis of the sparse event-driven computations to demonstrate reduced hardware overhead when operating in the spiking domain.

515 citations

Proceedings ArticleDOI
06 Aug 2001
TL;DR: A model that predicts the scaling nature of this leakage reduction effect is presented and use of stack effect for leakage reduction and other implications of this effect are discussed.
Abstract: Technology scaling demands a decrease in both V/sub dd/ and V/sub t/ to sustain historical delay reduction, while restraining active power dissipation. Scaling of V/sub t/ however leads to substantial increase in the sub-threshold leakage power and is expected to become a considerable constituent of the total dissipated power. It has been observed that the stacking of two off devices has smaller leakage current than one off device. In this paper we present a model that predicts the scaling nature of this leakage reduction effect. Device measurements are presented to prove the model's accuracy. Use of stack effect for leakage reduction and other implications of this effect are discussed.

366 citations


Cites methods from "Estimation of standby leakage power..."

  • ...This stack forcing technique can be either used in conjunction with dual-Vt or can be used to reduce the leakage in a single-Vt design....

    [...]

References
More filters
Book
01 Sep 1988
TL;DR: In this article, the authors present the computer techniques, mathematical tools, and research results that will enable both students and practitioners to apply genetic algorithms to problems in many fields, including computer programming and mathematics.
Abstract: From the Publisher: This book brings together - in an informal and tutorial fashion - the computer techniques, mathematical tools, and research results that will enable both students and practitioners to apply genetic algorithms to problems in many fields Major concepts are illustrated with running examples, and major algorithms are illustrated by Pascal computer programs No prior knowledge of GAs or genetics is assumed, and only a minimum of computer programming and mathematics background is required

52,797 citations

01 Jan 1989
TL;DR: This book brings together the computer techniques, mathematical tools, and research results that will enable both students and practitioners to apply genetic algorithms to problems in many fields.
Abstract: From the Publisher: This book brings together - in an informal and tutorial fashion - the computer techniques, mathematical tools, and research results that will enable both students and practitioners to apply genetic algorithms to problems in many fields. Major concepts are illustrated with running examples, and major algorithms are illustrated by Pascal computer programs. No prior knowledge of GAs or genetics is assumed, and only a minimum of computer programming and mathematics background is required.

33,034 citations


"Estimation of standby leakage power..." refers background or methods in this paper

  • ...The genetic algorithm used in this paper is similar to the one proposed by Goldberg [9]....

    [...]

  • ...Genetic algorithm [9] has the advantage of exploiting historical information to speculate on new search points with expected improved performance....

    [...]

  • ...Thegeneticalgorithmusedinthispaperissimilarto theoneproposedbyGoldberg[9]....

    [...]

Book
01 Jan 1991
TL;DR: This book sets out to explain what genetic algorithms are and how they can be used to solve real-world problems, and introduces the fundamental genetic algorithm (GA), and shows how the basic technique may be applied to a very simple numerical optimisation problem.
Abstract: This book sets out to explain what genetic algorithms are and how they can be used to solve real-world problems. The first objective is tackled by the editor, Lawrence Davis. The remainder of the book is turned over to a series of short review articles by a collection of authors, each explaining how genetic algorithms have been applied to problems in their own specific area of interest. The first part of the book introduces the fundamental genetic algorithm (GA), explains how it has traditionally been designed and implemented and shows how the basic technique may be applied to a very simple numerical optimisation problem. The basic technique is then altered and refined in a number of ways, with the effects of each change being measured by comparison against the performance of the original. In this way, the reader is provided with an uncluttered introduction to the technique and learns to appreciate why certain variants of GA have become more popular than others in the scientific community. Davis stresses that the choice of a suitable representation for the problem in hand is a key step in applying the GA, as is the selection of suitable techniques for generating new solutions from old. He is refreshingly open in admitting that much of the business of adapting the GA to specific problems owes more to art than to science. It is nice to see the terminology associated with this subject explained, with the author stressing that much of the field is still an active area of research. Few assumptions are made about the reader's mathematical background. The second part of the book contains thirteen cameo descriptions of how genetic algorithmic techniques have been, or are being, applied to a diverse range of problems. Thus, one group of authors explains how the technique has been used for modelling arms races between neighbouring countries (a non- linear, dynamical system), while another group describes its use in deciding design trade-offs for military aircraft. My own favourite is a rather charming account of how the GA was applied to a series of scheduling problems. Having attempted something of this sort with Simulated Annealing, I found it refreshing to see the authors highlighting some of the problems that they had encountered, rather than sweeping them under the carpet as is so often done in the scientific literature. The editor points out that there are standard GA tools available for either play or serious development work. Two of these (GENESIS and OOGA) are described in a short, third part of the book. As is so often the case nowadays, it is possible to obtain a diskette containing both systems by sending your Visa card details (or $60) to an address in the USA.

6,758 citations


"Estimation of standby leakage power..." refers methods in this paper

  • ...Then a tness technique called linear normalization [14] is adopted to calculate tnesses that begin with 100 and linearly decrease to 1....

    [...]

Journal ArticleDOI
TL;DR: In this paper, techniques for low power operation are presented which use the lowest possible supply voltage coupled with architectural, logic style, circuit, and technology optimizations to reduce power consumption in CMOS digital circuits while maintaining computational throughput.
Abstract: Motivated by emerging battery-operated applications that demand intensive computation in portable environments, techniques are investigated which reduce power consumption in CMOS digital circuits while maintaining computational throughput. Techniques for low-power operation are shown which use the lowest possible supply voltage coupled with architectural, logic style, circuit, and technology optimizations. An architecturally based scaling strategy is presented which indicates that the optimum voltage is much lower than that determined by other scaling considerations. This optimum is achieved by trading increased silicon area for reduced power consumption. >

2,690 citations

Journal Article
TL;DR: An architecturally based scaling strategy is presented which indicates that the optimum voltage is much lower than that determined by other scaling considerations, and is achieved by trading increased silicon area for reduced power consumption.
Abstract: Motivated by emerging battery-operated applications that demand intensive computation in portable environments, techniques are investigated which reduce power consumption in CMOS digital circuits while maintaining computational throughput Techniques for low-power operation are shown which use the lowest possible supply voltage coupled with architectural, logic style, circuit, and technology optimizations An architecturally based scaling strategy is presented which indicates that the optimum voltage is much lower than that determined by other scaling considerations This optimum is achieved by trading increased silicon area for reduced power consumption >

2,337 citations


"Estimation of standby leakage power..." refers background in this paper

  • ...Introduction The increasing use of portable computing and wireless communication systems makes power dissipation a major concern in low power circuit designs [2], [20]....

    [...]