scispace - formally typeset
Search or ask a question
Journal Article•DOI•

Eternal Black Holes in AdS

TL;DR: In this paper, a dual non-perturbative description for maximally extended Schwarzschild anti-de-Sitter spacetimes is proposed, which involves two copies of the conformal field theory associated to the AdS spacetime and an initial entangled state.
Abstract: We propose a dual non-perturbative description for maximally extended Schwarzschild Anti-de-Sitter spacetimes. The description involves two copies of the conformal field theory associated to the AdS spacetime and an initial entangled state. In this context we also discuss a version of the information loss paradox and its resolution.
Citations
More filters
Journal Article•DOI•
TL;DR: In this paper, a holographic interpretation of entanglement entropy in conformal field theories is proposed from AdS/CFT correspondence, and the relation between the entropy and central charges in 4D conformal fields is examined.
Abstract: This is an extended version of our short report [1], where a holographic interpretation of entanglement entropy in conformal field theories is proposed from AdS/CFT correspondence. In addition to a concise review of relevant recent progresses of entanglement entropy and details omitted in the earlier letter, this paper includes the following several new results: We give a more direct derivation of our claim which relates the entanglement entropy with the minimal area surfaces in the AdS3/CFT2 case as well as some further discussions on higher dimensional cases. Also the relation between the entanglement entropy and central charges in 4D conformal field theories is examined. We check that the logarithmic part of the 4D entanglement entropy computed in the CFT side agrees with the AdS5 result at least under a specific condition. Finally we estimate the entanglement entropy of massive theories in generic dimensions by making use of our proposal.

2,310 citations

Journal Article•DOI•
TL;DR: In this paper, a covariant generalization of the holographic entanglement entropy proposal of hep-th/0603001 is proposed to understand the time-dependence of entropy in generic quantum field theories.
Abstract: With an aim towards understanding the time-dependence of entanglement entropy in generic quantum field theories, we propose a covariant generalization of the holographic entanglement entropy proposal of hep-th/0603001. Apart from providing several examples of possible covariant generalizations, we study a particular construction based on light-sheets, motivated in similar spirit to the covariant entropy bound underlying the holographic principle. In particular, we argue that the entanglement entropy associated with a specified region on the boundary in the context of the AdS/CFT correspondence is given by the area of a co-dimension two bulk surface with vanishing expansions of null geodesics. We demonstrate our construction with several examples to illustrate its reduction to the holographic entanglement entropy proposal in static spacetimes. We further show how this proposal may be used to understand the time evolution of entanglement entropy in a time varying QFT state dual to a collapsing black hole background. Finally, we use our proposal to argue that the Euclidean wormhole geometries with multiple boundaries should be regarded as states in a non-interacting but entangled set of QFTs, one associated to each boundary.

2,047 citations

Journal Article•DOI•
TL;DR: In this paper, the authors studied the quantum mechanical model of $N$ Majorana fermions with random interactions of a few Fermions at a time (Sachdev-Ye-Kitaev model) in the large N$ limit.
Abstract: The authors study in detail the quantum mechanical model of $N$ Majorana fermions with random interactions of a few fermions at a time (Sachdev-Ye-Kitaev model) in the large $N$ limit. At low energies, the system is strongly interacting and an emergent conformal symmetry develops. Performing technical calculations, the authors elucidate a number of properties of the model near the conformal point.

1,953 citations

Journal Article•DOI•
TL;DR: In this article, the authors provide a derivation of holographic entanglement entropy for spherical entangling surfaces, which relies on conformally mapping the boundary CFT to a hyperbolic geometry and observing that the vacuum state is mapped to a thermal state in the latter geometry.
Abstract: We provide a derivation of holographic entanglement entropy for spherical entangling surfaces. Our construction relies on conformally mapping the boundary CFT to a hyperbolic geometry and observing that the vacuum state is mapped to a thermal state in the latter geometry. Hence the conformal transformation maps the entanglement entropy to the thermodynamic entropy of this thermal state. The AdS/CFT dictionary allows us to calculate this thermodynamic entropy as the horizon entropy of a certain topological black hole. In even dimensions, we also demonstrate that the universal contribution to the entanglement entropy is given by A-type trace anomaly for any CFT, without reference to holography.

1,601 citations

Journal Article•DOI•
TL;DR: In this article, the authors used holography to study sensitive dependence on initial conditions in strongly coupled field theories and showed that the effect of the early infalling quanta relative to the t = 0 slice creates a shock wave that destroys the local two-sided correlations present in the unperturbed state.
Abstract: We use holography to study sensitive dependence on initial conditions in strongly coupled field theories. Specifically, we mildly perturb a thermofield double state by adding a small number of quanta on one side. If these quanta are released a scrambling time in the past, they destroy the local two-sided correlations present in the unperturbed state. The corresponding bulk geometry is a two-sided AdS black hole, and the key effect is the blueshift of the early infalling quanta relative to the t = 0 slice, creating a shock wave. We comment on string- and Planck-scale corrections to this setup, and discuss points that may be relevant to the firewall controversy.

1,589 citations

References
More filters
Journal Article•DOI•
TL;DR: In this article, it was shown that the Kaluza-Klein modes of Type IIB supergravity on $AdS_5\times {\bf S}^5$ match with the chiral operators of the super Yang-Mills theory in four dimensions.
Abstract: Recently, it has been proposed by Maldacena that large $N$ limits of certain conformal field theories in $d$ dimensions can be described in terms of supergravity (and string theory) on the product of $d+1$-dimensional $AdS$ space with a compact manifold. Here we elaborate on this idea and propose a precise correspondence between conformal field theory observables and those of supergravity: correlation functions in conformal field theory are given by the dependence of the supergravity action on the asymptotic behavior at infinity. In particular, dimensions of operators in conformal field theory are given by masses of particles in supergravity. As quantitative confirmation of this correspondence, we note that the Kaluza-Klein modes of Type IIB supergravity on $AdS_5\times {\bf S}^5$ match with the chiral operators of ${\cal N}=4$ super Yang-Mills theory in four dimensions. With some further assumptions, one can deduce a Hamiltonian version of the correspondence and show that the ${\cal N}=4$ theory has a large $N$ phase transition related to the thermodynamics of $AdS$ black holes.

14,084 citations

Journal Article•DOI•
TL;DR: In this paper, a boundary of the anti-deSitter space analogous to a cut-off on the Liouville coordinate of the two-dimensional string theory is introduced to obtain certain Green's functions in 3+1-dimensional N = 4 supersymmetric Yang-Mills theory with a large number of colors via non-critical string theory.

11,887 citations

Book•
01 Jan 1982
TL;DR: A comprehensive review of the subject of gravitational effects in quantum field theory can be found in this paper, where special emphasis is given to the Hawking black hole evaporation effect, and to particle creation processes in the early universe.
Abstract: This book presents a comprehensive review of the subject of gravitational effects in quantum field theory. Although the treatment is general, special emphasis is given to the Hawking black hole evaporation effect, and to particle creation processes in the early universe. The last decade has witnessed a phenomenal growth in this subject. This is the first attempt to collect and unify the vast literature that has contributed to this development. All the major technical results are presented, and the theory is developed carefully from first principles. Here is everything that students or researchers will need to embark upon calculations involving quantum effects of gravity at the so-called one-loop approximation level.

6,564 citations

Journal Article•DOI•
Edward Witten1•
TL;DR: The correspondence between supergravity and string theory on AdS space and boundary conformal eld theory relates the thermodynamics of N = 4 super Yang-Mills theory in four dimensions to the thermodynamic properties of Schwarzschild black holes in Anti-de Sitter space as mentioned in this paper.
Abstract: The correspondence between supergravity (and string theory) on AdS space and boundary conformal eld theory relates the thermodynamics of N = 4 super Yang-Mills theory in four dimensions to the thermodynamics of Schwarzschild black holes in Anti-de Sitter space. In this description, quantum phenomena such as the spontaneous breaking of the center of the gauge group, magnetic connement, and the mass gap are coded in classical geometry. The correspondence makes it manifest that the entropy of a very large AdS Schwarzschild black hole must scale \holographically" with the volume of its horizon. By similar methods, one can also make a speculative proposal for the description of large N gauge theories in four dimensions without supersymmetry.

4,209 citations

Journal Article•DOI•
TL;DR: In this paper, it is shown that the ignorance principle holds for the quantum-mechanical evaporation of black holes, where the black hole creates particles in pairs, with one particle always falling into the hole and the other possibly escaping to infinity.
Abstract: The principle of equivalence, which says that gravity couples to the energy-momentum tensor of matter, and the quantum-mechanical requirement that energy should be positive imply that gravity is always attractive. This leads to singularities in any reasonable theory of gravitation. A singularity is a place where the classical concepts of space and time break down as do all the known laws of physics because they are all formulated on a classical space-time background. In this paper it is claimed that this breakdown is not merely a result of our ignorance of the correct theory but that it represents a fundamental limitation to our ability to predict the future, a limitation that is analogous but additional to the limitation imposed by the normal quantum-mechanical uncertainty principle. The new limitation arises because general relativity allows the causal structure of space-time to be very different from that of Minkowski space. The interaction region can be bounded not only by an initial surface on which data are given and a final surface on which measurements are made but also a "hidden surface" about which the observer has only limited information such as the mass, angular momentum, and charge. Concerning this hidden surface one has a "principle of ignorance": The surface emits with equal probability all configurations of particles compatible with the observers limited knowledge. It is shown that the ignorance principle holds for the quantum-mechanical evaporation of black holes: The black hole creates particles in pairs, with one particle always falling into the hole and the other possibly escaping to infinity. Because part of the information about the state of the system is lost down the hole, the final situation is represented by a density matrix rather than a pure quantum state. This means there is no $S$ matrix for the process of black-hole formation and evaporation. Instead one has to introduce a new operator, called the superscattering operator, which maps density matrices describing the initial situation to density matrices describing the final situation.

2,226 citations