scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Eternal Sunshine of the Spotless Net: Selective Forgetting in Deep Networks

TL;DR: In this article, the weights are modified so that any probing function of the weights is indistinguishable from the same function applied to the weights of a network trained without the data to be forgotten.
Abstract: We explore the problem of selectively forgetting a particular subset of the data used for training a deep neural network. While the effects of the data to be forgotten can be hidden from the output of the network, insights may still be gleaned by probing deep into its weights. We propose a method for "scrubbing" the weights clean of information about a particular set of training data. The method does not require retraining from scratch, nor access to the data originally used for training. Instead, the weights are modified so that any probing function of the weights is indistinguishable from the same function applied to the weights of a network trained without the data to be forgotten. This condition is a generalized and weaker form of Differential Privacy. Exploiting ideas related to the stability of stochastic gradient descent, we introduce an upper-bound on the amount of information remaining in the weights, which can be estimated efficiently even for deep neural networks.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
23 May 2021
TL;DR: SISA training as mentioned in this paper is a framework that expedites the unlearning process by strategically limiting the influence of a data point in the training procedure, and it is designed to achieve the largest improvements for stateful algorithms like stochastic gradient descent for deep neural networks.
Abstract: Once users have shared their data online, it is generally difficult for them to revoke access and ask for the data to be deleted. Machine learning (ML) exacerbates this problem because any model trained with said data may have memorized it, putting users at risk of a successful privacy attack exposing their information. Yet, having models unlearn is notoriously difficult.We introduce SISA training, a framework that expedites the unlearning process by strategically limiting the influence of a data point in the training procedure. While our framework is applicable to any learning algorithm, it is designed to achieve the largest improvements for stateful algorithms like stochastic gradient descent for deep neural networks. SISA training reduces the computational overhead associated with unlearning, even in the worst-case setting where unlearning requests are made uniformly across the training set. In some cases, the service provider may have a prior on the distribution of unlearning requests that will be issued by users. We may take this prior into account to partition and order data accordingly, and further decrease overhead from unlearning.Our evaluation spans several datasets from different domains, with corresponding motivations for unlearning. Under no distributional assumptions, for simple learning tasks, we observe that SISA training improves time to unlearn points from the Purchase dataset by 4.63×, and 2.45× for the SVHN dataset, over retraining from scratch. SISA training also provides a speed-up of 1.36× in retraining for complex learning tasks such as ImageNet classification; aided by transfer learning, this results in a small degradation in accuracy. Our work contributes to practical data governance in machine unlearning.

173 citations

Posted ContentDOI
TL;DR: This paper proposes a novel membership inference attack that leverages the different outputs of an ML model's two versions to infer whether a target sample is part of the training set of the original model but out of theTraining set of a corresponding unlearned model.
Abstract: The right to be forgotten states that a data owner has the right to erase her data from an entity storing it. In the context of machine learning (ML), the right to be forgotten requires an ML model owner to remove the data owner's data from the training set used to build the ML model, a process known as machine unlearning. While originally designed to protect the privacy of the data owner, we argue that machine unlearning may leave some imprint of the data in the ML model and thus create unintended privacy risks. In this paper, we perform the first study on investigating the unintended information leakage caused by machine unlearning. We propose a novel membership inference attack which leverages the different outputs of an ML model's two versions to infer whether the deleted sample is part of the training set. Our experiments over five different datasets demonstrate that the proposed membership inference attack achieves strong performance. More importantly, we show that our attack in multiple cases outperforms the classical membership inference attack on the original ML model, which indicates that machine unlearning can have counterproductive effects on privacy. We notice that the privacy degradation is especially significant for well-generalized ML models where classical membership inference does not perform well. We further investigate two mechanisms to mitigate the newly discovered privacy risks and show that the only effective mechanism is to release the predicted label only. We believe that our results can help improve privacy in practical implementation of machine unlearning.

68 citations

Proceedings ArticleDOI
01 Jun 2021
TL;DR: In this paper, the influence of a subset of the training samples can be removed from the weights of a network trained on large-scale image classification tasks, and they provide strong computable bounds on the amount of remaining information after forgetting.
Abstract: We show that the influence of a subset of the training samples can be removed – or "forgotten" – from the weights of a network trained on large-scale image classification tasks, and we provide strong computable bounds on the amount of remaining information after forgetting. Inspired by real-world applications of forgetting techniques, we introduce a novel notion of forgetting in mixed-privacy setting, where we know that a "core" subset of the training samples does not need to be forgotten. While this variation of the problem is conceptually simple, we show that working in this setting significantly improves the accuracy and guarantees of forgetting methods applied to vision classification tasks. Moreover, our method allows efficient removal of all information contained in non-core data by simply setting to zero a subset of the weights with minimal loss in performance. We achieve these results by replacing a standard deep network with a suitable linear approximation. With opportune changes to the network architecture and training procedure, we show that such linear approximation achieves comparable performance to the original network and that the forgetting problem becomes quadratic and can be solved efficiently even for large models. Unlike previous forgetting methods on deep networks, ours can achieve close to the state-of-the-art accuracy on large scale vision tasks. In particular, we show that our method allows forgetting without having to trade off the model accuracy.

65 citations

Posted Content
TL;DR: This work proposes linear filtration as a intuitive, computationally efficient sanitization method for class-wide deletion requests for classification models (e.g. deep neural networks).
Abstract: Recently enacted legislation grants individuals certain rights to decide in what fashion their personal data may be used, and in particular a "right to be forgotten". This poses a challenge to machine learning: how to proceed when an individual retracts permission to use data which has been part of the training process of a model? From this question emerges the field of machine unlearning, which could be broadly described as the investigation of how to "delete training data from models". Our work complements this direction of research for the specific setting of class-wide deletion requests for classification models (e.g. deep neural networks). As a first step, we propose linear filtration as a intuitive, computationally efficient sanitization method. Our experiments demonstrate benefits in an adversarial setting over naive deletion schemes.

61 citations

Proceedings ArticleDOI
TL;DR: The authors proposed two new metrics, differential score and differential rank, for analyzing the leakage due to updates of natural language models. But they did not consider the privacy implications of their findings and proposed mitigation strategies.
Abstract: To continuously improve quality and reflect changes in data, machine learning applications have to regularly retrain and update their core models. We show that a differential analysis of language model snapshots before and after an update can reveal a surprising amount of detailed information about changes in the training data. We propose two new metrics---\emph{differential score} and \emph{differential rank}---for analyzing the leakage due to updates of natural language models. We perform leakage analysis using these metrics across models trained on several different datasets using different methods and configurations. We discuss the privacy implications of our findings, propose mitigation strategies and evaluate their effect.

57 citations

References
More filters
Dissertation
01 Jan 2009
TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Abstract: In this work we describe how to train a multi-layer generative model of natural images. We use a dataset of millions of tiny colour images, described in the next section. This has been attempted by several groups but without success. The models on which we focus are RBMs (Restricted Boltzmann Machines) and DBNs (Deep Belief Networks). These models learn interesting-looking filters, which we show are more useful to a classifier than the raw pixels. We train the classifier on a labeled subset that we have collected and call the CIFAR-10 dataset.

15,005 citations

Book
11 Aug 2014
TL;DR: The preponderance of this monograph is devoted to fundamental techniques for achieving differential privacy, and application of these techniques in creative combinations, using the query-release problem as an ongoing example.
Abstract: The problem of privacy-preserving data analysis has a long history spanning multiple disciplines. As electronic data about individuals becomes increasingly detailed, and as technology enables ever more powerful collection and curation of these data, the need increases for a robust, meaningful, and mathematically rigorous definition of privacy, together with a computationally rich class of algorithms that satisfy this definition. Differential Privacy is such a definition.After motivating and discussing the meaning of differential privacy, the preponderance of this monograph is devoted to fundamental techniques for achieving differential privacy, and application of these techniques in creative combinations, using the query-release problem as an ongoing example. A key point is that, by rethinking the computational goal, one can often obtain far better results than would be achieved by methodically replacing each step of a non-private computation with a differentially private implementation. Despite some astonishingly powerful computational results, there are still fundamental limitations — not just on what can be achieved with differential privacy but on what can be achieved with any method that protects against a complete breakdown in privacy. Virtually all the algorithms discussed herein maintain differential privacy against adversaries of arbitrary computational power. Certain algorithms are computationally intensive, others are efficient. Computational complexity for the adversary and the algorithm are both discussed.We then turn from fundamentals to applications other than queryrelease, discussing differentially private methods for mechanism design and machine learning. The vast majority of the literature on differentially private algorithms considers a single, static, database that is subject to many analyses. Differential privacy in other models, including distributed databases and computations on data streams is discussed.Finally, we note that this work is meant as a thorough introduction to the problems and techniques of differential privacy, but is not intended to be an exhaustive survey — there is by now a vast amount of work in differential privacy, and we can cover only a small portion of it.

5,190 citations

Proceedings Article
01 Jan 1989
TL;DR: A class of practical and nearly optimal schemes for adapting the size of a neural network by using second-derivative information to make a tradeoff between network complexity and training set error is derived.
Abstract: We have used information-theoretic ideas to derive a class of practical and nearly optimal schemes for adapting the size of a neural network. By removing unimportant weights from a network, several improvements can be expected: better generalization, fewer training examples required, and improved speed of learning and/or classification. The basic idea is to use second-derivative information to make a tradeoff between network complexity and training set error. Experiments confirm the usefulness of the methods on a real-world application.

3,961 citations

Proceedings Article
01 Jan 2015
TL;DR: It is found that max-pooling can simply be replaced by a convolutional layer with increased stride without loss in accuracy on several image recognition benchmarks.
Abstract: Most modern convolutional neural networks (CNNs) used for object recognition are built using the same principles: Alternating convolution and max-pooling layers followed by a small number of fully connected layers. We re-evaluate the state of the art for object recognition from small images with convolutional networks, questioning the necessity of different components in the pipeline. We find that max-pooling can simply be replaced by a convolutional layer with increased stride without loss in accuracy on several image recognition benchmarks. Following this finding -- and building on other recent work for finding simple network structures -- we propose a new architecture that consists solely of convolutional layers and yields competitive or state of the art performance on several object recognition datasets (CIFAR-10, CIFAR-100, ImageNet). To analyze the network we introduce a new variant of the "deconvolution approach" for visualizing features learned by CNNs, which can be applied to a broader range of network structures than existing approaches.

3,601 citations

Proceedings ArticleDOI
24 Oct 2016
TL;DR: In this paper, the authors develop new algorithmic techniques for learning and a refined analysis of privacy costs within the framework of differential privacy, and demonstrate that they can train deep neural networks with nonconvex objectives, under a modest privacy budget, and at a manageable cost in software complexity, training efficiency, and model quality.
Abstract: Machine learning techniques based on neural networks are achieving remarkable results in a wide variety of domains. Often, the training of models requires large, representative datasets, which may be crowdsourced and contain sensitive information. The models should not expose private information in these datasets. Addressing this goal, we develop new algorithmic techniques for learning and a refined analysis of privacy costs within the framework of differential privacy. Our implementation and experiments demonstrate that we can train deep neural networks with non-convex objectives, under a modest privacy budget, and at a manageable cost in software complexity, training efficiency, and model quality.

2,944 citations