scispace - formally typeset

Journal ArticleDOI

Evacuation Route Selection Based on Tree-Based Hazards Using Light Detection and Ranging and GIS

01 Apr 2006-Journal of Transportation Engineering-asce (American Society of Civil Engineers)-Vol. 132, Iss: 4, pp 312-320

TL;DR: A novel methodology for automating the tree threat identification process by using airborne laser altimetry data and a geographical information system (GIS) has the potential to be used for selecting the best possible evacuation routes based on tree hazards.
Abstract: Falling trees pose a great hazard to the safe and uninterrupted use of the road transportation system during storm events. The present process of manually identifying potentially hazardous trees is laborious and inefficient. This paper presents a novel methodology for automating the tree threat identification process by using airborne laser altimetry data and a geographical information system (GIS). This methodology has the potential to be used for selecting the best possible evacuation routes based on tree hazards. The proposed method harnesses the power of spatial analysis functionality provided by existing GIS software and high-quality, three-dimensional (3D) data obtained from an airborne laser scanning system. This paper highlights the benefits related to using: (1) Height calculation of tall objects; (2) identification of hazardous objects; and (3) object identification from irregular 3D light detection and ranging point data over the currently employed manual methods.

Content maybe subject to copyright    Report

Provided by the author(s) and University College Dublin Library in accordance with publisher
policies. Please cite the published version when available.
Title Evacuation route selection based on tree-based hazards using LiDar and GIS
Authors(s) Laefer, Debra F.; Pradhan, Anu
Publication date 2006-04
Publication information Journal of Transportation Engineering, 132 (4): 312-320, Technical papers
Publisher American Society of Civil Engineering (ASCE)
Link to online version http://dx.doi.org/10.1061/(ASCE)0733-947X(2006)132:4(312)
Item record/more information http://hdl.handle.net/10197/2307
Publisher's version (DOI) 10.1061/(ASCE)0733-947X(2006)132:4(312)
Downloaded 2022-08-10T07:51:54Z
The UCD community has made this article openly available. Please share how this access
benefits you. Your story matters! (@ucd_oa)
© Some rights reserved. For more information, please see the item record link above.

1
Evacuation Route Selection Based on Tree-Based
Hazards Using LiDAR and GIS
Debra F. Laefer,
1
M. ASCE and Anu R. Pradhan
2
ABSTRACT
Falling trees pose a great hazard to the safe and uninterrupted use of the road transportation system, during storm
events. The present process of manually identifying potentially hazardous trees is laborious and inefficient. This
paper presents a novel methodology for automating the tree threat identification process by using airborne laser
altimetry data and a Geographical Information System (GIS). This methodology has the potential to be used for
selecting the best possible evacuation routes based on tree hazards. The proposed method harnesses the power of
spatial analysis functionality provided by existing GIS software and high-quality, three-dimensional (3D) data
obtained from an airborne laser scanning system. This paper highlights the benefits related to using (a) height
calculation of tall objects, (b) identification of hazardous objects, and (c) object identification from irregular 3D
Light Detection And Ranging (LiDAR) point data over the currently employed manual methods.
KEYWORDS: Geographic Information Systems, Roadside Hazards, Highway Maintenance, Trees,
Transportation Management, Highway Safety, Lasers, Evacuation
1
Lecturer, Department of Civil Engineering, University College Dublin, Earlsfort Terrace, Room 115, Dublin 2, Ireland. Email:
debra.laefer@ucd.ie
2
Graduate Research Assistant, Department of Civil and Environmental Engineering, PH 119, Carnegie Mellon University, Pittsburgh, PA. Email:
arpradha@andrew.cmu.edu

2
INTRODUCTION
Wooded areas flank the primary and secondary road networks in many states. During severe weather incidents,
fallen trees knock down power lines, endanger telephone lines, and block roadways. Besides disrupting traffic flow,
such incidents endanger the lives of drivers and emergency crews, hinder service restoration, and impede effective
emergency response. To avoid this, trees that may be a threat should be identified, and measures should be
considered to prevent them from falling on overhead lines and thoroughfares. Before preventive measures can be
considered, however, these trees must be identified. A manual approach to such a problem is not viable, because of
the time and resources necessary for the initial assessment and the need for periodic updates. New technologies offer
the possibility of automating such an identification process. With advances in Geographical Information System
(GIS) and Remote Sensing (RS), an automated hazard identification tool can be developed for the aforementioned
problem that is more economical, efficient, reliable, and safer than a manual approach. The ideal application of such
an evaluation is in the selection of the most reliable evacuation routes. The goal of this research is to describe the
development of such algorithms and the resources necessary to automate identification of trees that may endanger
transportation routes.
BACKGROUND
Hurricanes, other strong winds, and ice storms cause tremendous damage across the United States (US) including
flooding, wind-based destruction of property, and blockage of major road networks from fallen objects. The direct
cost of such incidents can be in the billions of dollars, as was the case with hurricane Floyd in 1999 in eastern North
Carolina ($5.45 billion in damage costs) [Herbert et al. 1997], as well as indirect costs for economic losses due to
closed businesses and lost productivity. The blockage of roads due to fallen trees and utility lines during severe
weather is a significant problem (Draper 2003). According to the North Carolina Division of Emergency
Management, after hurricane Isabel, Bertie County alone required tree debris removal from all roads in the county
except three, totaling 780 km of road from which 52,865 cubic meter or 43,245.27 kg of debris was removed, at a
cost of $1.6 million, over the course of 84 days (Canty 2004). Beyond economics, posing a great risk to motorists,
and interfering with utility service, roadway obstacles also disrupt traffic flow, and thus hamper evacuation and
rescue operations.

3
The problem of tree-based hazards is well recognized, and each year millions of dollars are spent annually to
identify and cut or trim such trees (Act 2003). In most states, identification of potentially hazardous tall objects has,
to date, been done manually by road crews on an ad hoc basis. The task is significant. In North Carolina (NC) alone,
there are 125,580 km of state maintained roads, not including 34,680 km of county and city roads (NC-DOT 2003)
covering an area of 136,523 km
2
(State Library of NC 2004). Across the US, the national interstate system alone is
comprised of 75,150 km of highway (FHWA 2003). As such, a manual approach to hazardous tree identification is
cost prohibitive as well as time-consuming, especially since the effort would require periodic updates because of tree
growth and road expansion. Thus, an automated process that is fast and potentially cost-effective, during initial
identification and later updating, is critically needed.
At the most elementary level, for an automated tool to be effective it should be able to (a) identify the roads of
interest, (b) locate tall objects, (c) calculate the heights of potentially hazardous objects along the roads, and (d)
compare the height of the object to its distance from the roadway. The success of such an automated tool depends on
both the quality of available data and a robust application that analyzes and processes the given data. As highly
detailed data must be collected along the entire length of road network, data gathering becomes the most time-
consuming and expensive part of the process. Light Detection And Ranging (LiDAR), a recent advancement in RS
technologies, offers the potential of automated and expeditious data collection, and GIS provides a means to analyze
and process such data.
LiDAR and Its Characteristics
LiDAR is an active remote sensing technology that is used to collect topographic data (NOAA 2003). The data are
collected with aircraft-mounted lasers capable of recording elevation measurements at a rate of 5,000 to 50,000
pulses per second. The difference in time is measured from when a laser pulse is emitted from a sensor to when the
target objects in the path of the laser reflect back the pulse. Using the speed of light, these time measurements can be
converted into distance or range (Lim et al. 2001). The LiDAR instruments collect elevation data. To make these
data spatially relevant, the positions of the data points must be known. Thus, a high-precision global positioning
system (GPS) antenna, mounted on the aircraft, is used to determine the spatial positions of the data points. The end

4
product is accurate, geographically registered longitude, latitude, and elevation from the mean sea level (x, y, z)
positions for every data point (Baltsavias 1999). Latitude, longitude, and elevation are typically presented in a plane
co-ordinate system.
LiDAR is capable of providing both horizontal and vertical information at high spatial resolutions and vertical
accuracies. Airborne-based LiDAR data are accurate to +/-15 cm for vertical measurements and +/- 1.5 m (worst
case scenario) for horizontal distances (Flood 1999), although the system is marketed as having an accuracy of an
order of magnitude better in both directions (ALTM 2003). The extent of LiDAR point density is dependent on
flying height and system dependent factors such as platform velocity, sampling frequency, and field of view
(Axelsson 1999). The point density needs to be adjusted according to the application so that sufficient information is
harvested, while not collecting excessively detailed data. LiDAR technology has been used in many areas of
applications such as (a) generation for a variety of GIS/mapping related products, (b) forestry, (c) coastal
engineering, (d) flood plain mapping, (e) disaster response and damage assessment, and (f) urban modeling
(Airbornelasermapping 2003).
A current limitation of LiDAR is that it does not store any topological, shape, or size information of the
geographical features scanned. A LiDAR dataset is simply a collection of somewhat randomly distributed 3D points.
As it does not provide feature information, clever and efficient algorithms are required for feature identification
depending upon the desired application. Identification of tree hazards requires such an algorithm. LiDAR provides
only qualitative data, thus software capable of analysis is also required. GIS possesses such capabilities.
GIS and Its Characteristics
GIS can be defined as a computer-based tool set for collecting, storing, retrieving, transforming, and displaying
spatial data from a discipline-specific domain for a particular set of purposes (Burrough and McDonnell 1998).
Although computer aided design (CAD) software can perform similar functions, the true strength of GIS lies not its
ability to store and process data but in its spatial representation and spatial analysis (Rasdorf et al. 2000). Spatial
analysis involves examining the geographic patterns in data and observing relationships between geographical

Citations
More filters

Journal ArticleDOI
TL;DR: Empirical studies show the proposed approach to be at least an order of magnitude faster when compared to a conventional region growing method and able to incorporate semantic-based feature criteria, while achieving precision, recall, and fitness scores of at least 75% and as much as 95%.
Abstract: This paper introduces a novel, region-growing algorithm for the fast surface patch segmentation of three-dimensional point clouds of urban environments. The proposed algorithm is composed of two stages based on a coarse-to-fine concept. First, a region-growing step is performed on an octree-based voxelized representation of the input point cloud to extract major (coarse) segments. The output is then passed through a refinement process. As part of this, there are two competing factors related to voxel size selection. To balance the constraints, an adaptive octree is created in two stages. Empirical studies on real terrestrial and airborne laser scanning data for complex buildings and an urban setting show the proposed approach to be at least an order of magnitude faster when compared to a conventional region growing method and able to incorporate semantic-based feature criteria, while achieving precision, recall, and fitness scores of at least 75% and as much as 95%.

307 citations


Journal ArticleDOI
TL;DR: This fully automated approach rivals processing times of other techniques with the distinct advantage of extracting more boundary points, especially in less dense data sets, which may enable its more rapid exploitation of aerial laser scanning data and ultimately preclude needing a priori knowledge.
Abstract: Traditional documentation capabilities of laser scanning technology can be further exploited for urban modeling through the transformation of resulting point clouds into solid models compatible for computational analysis. This article introduces such a technique through the combination of an angle criterion and voxelization. As part of that, a k-nearest neighbor (kNN) searching algorithm is implemented using a predefined number of kNN points combined with a maximum radius of the neighborhood, something not previously implemented. From this sample, points are categorized as boundary or interior points based on an angle criterion. Facade features are determined based on underlying vertical and horizontal grid voxels of the feature boundaries by a grid clustering technique. The complete building model involving all full voxels is generated by employing the Flying Voxel method to relabel voxels that are inside openings or outside the facade as empty voxels. Experimental results on three different buildings, using four distinct sampling densities showed successful detection of all openings, reconstruction of all building facades, and automatic filling of all improper holes. The maximum nodal displacement divergence was 1.6% compared to manually generated meshes from measured drawings. This fully automated approach rivals processing times of other techniques with the distinct advantage of extracting more boundary points, especially in less dense data sets (<175 points/m2), which may enable its more rapid exploitation of aerial laser scanning data and ultimately preclude needing a priori knowledge.

93 citations


Cites methods from "Evacuation Route Selection Based on..."

  • ...LiDAR is being used in civil engineering applications most significantly in transportation for road modeling (Cai and Rasdorf, 2008; Tsai et al., 2009), sign inventorying (Wang et al., 2010), road defect identification (Zhang and Elaksher, 2011), and disaster planning (Laefer and Pradhan, 2006)....

    [...]


Journal ArticleDOI
Abstract: Automated conversion of point cloud data from laser scanning into formats appropriate for structural engineering holds great promise for exploiting increasingly available aerially and terrestrially based pixelized data for a wide range of surveying-related applications from environmental modeling to disaster management. This paper introduces a point-based voxelization method to automatically transform point cloud data into solid models for computational modeling. The fundamental viability of the technique is visually demonstrated for both aerial and terrestrial data. For aerial and terrestrial data, this was achieved in less than 30 s for data sets up to 650,000 points. In all cases, the solid models converged without any user intervention when processed in a commercial finite-element method program.

55 citations


Additional excerpts

  • ...…functionality from laser scanning and other remote sensing data including three-dimensional (3D) volume estimation for mining (Mukherji 2011), road documentation (Dong et al. 2007) structural identification (Shan and Lee 2005; Zhang et al. 2011), and emergency planning (Laefer and Pradhan 2006)....

    [...]


Journal ArticleDOI
Mei Po Kwan1, Daniel M. Ransberger1Institutions (1)
TL;DR: The results show that the use of LiDAR data in emergency response situations can significantly reduce the response times for first responders to reach disaster sites.
Abstract: This article explores whether the use of LiDAR data in detecting transport network obstructions shortens the time required to reach disaster sites. It presents a method for doing this using LiDAR data collected in New Orleans, Louisiana (USA) before and after Hurricane Katrina. It involves identifying all the LiDAR data points that lie within transport links (e.g., highways or streets) and performing blockage detection analysis with the Quick Terrain Modeler (QT Modeler) software. After performing this blockage detection, routing analysis was performed to determine the effect of these obstructions on the time needed to reach 30 randomly chosen locations in the study area from the centrally located City of New Orleans Fire Station. The results show that the use of LiDAR data in emergency response situations can significantly reduce the response times for first responders to reach disaster sites.

53 citations


Cites methods from "Evacuation Route Selection Based on..."

  • ...The method outlined in this article builds upon recent research on the application of LiDAR technology in disaster management (e.g., Firchau & Wiechert, 2005; Laefer & Pradhan, 2006)....

    [...]

  • ...One study developed a methodology for determining preferable disaster and hurricane evacuation routes in North Carolina (Laefer & Pradhan, 2006)....

    [...]


Journal ArticleDOI
Tommy Hinks1, Hamish Carr1, Debra F. Laefer1Institutions (1)
TL;DR: The main conclusions of this study are that an appropriate amount of strip overlap, together with a flight path diagonal to the underlying street grid produces a vastly enhanced level of detail on vertical surfaces, beyond what has been previously available.
Abstract: Aerial light detection and ranging (LiDAR) offers the potential to autogenerate detailed, three-dimensional (3D) models of the built environment in urban settings. Autogeneration is needed as manual generation is not economically feasible for large areas, and such models are needed for a wide range of applications from improved noise and pollution prediction to disaster mitigation modeling and visualization. Current laser scanning hardware and the dense geometry of urban environments are two major constraints in LiDAR scanning. This paper outlines the difficulties related to effective surface data capture, with emphasis on vertical surfaces, in an urban environment for the purpose of 3D modeling. A flight planning strategy to overcome these difficulties is presented, along with a case study of a data set collected with this strategy. The main conclusions of this study are that an appropriate amount of strip overlap, together with a flight path diagonal to the underlying street grid produces a vastly enhanced level of detail on vertical surfaces, beyond what has been previously available.

48 citations


Cites methods from "Evacuation Route Selection Based on..."

  • ...…been used in many areas of applications such as 1 geographic information system GIS content generation; 2 disaster response and damage assessment Laefer and Pradhan 2006 ; 3 flood plain mapping Hollaus et al. 2005 ; 4 forestry Andersen et al. 2005 ; 5 urban mod- 1Doctoral Candidate, School of…...

    [...]


References
More filters

Book
01 Jan 2001
TL;DR: The Third Edition of this bestselling textbook has been fully revised and updated to include the latest developments in the field and still retains its accessible format to appeal to a broad range of students.
Abstract: The Third Edition of this bestselling textbook has been fully revised and updated to include the latest developments in the field and still retains its accessible format to appeal to a broad range of students.Now divided into five clear sections the book investigates the unique, complex and difficult problems that are posed by geographic information and together they build into a holistic understanding of the key principles of GIS.This is the most current, authoritative and comprehensive treatment of the field, that goes from fundamental principles to the big picture of:GIS and the New World Ordersecurity, health and well-beingdigital differentiation in GIS consumptionthe core organizing role of GIS in Geographythe greening of GISgrand challenges of GISciencescience and explanationKey features:Four-colour throughoutAssociated website with free online resourcesTeachers manual available for lecturersA complete learning resource, with accompanying instructor links, free online lab resources and personal syllabiIncludes learning objectives and review boxes throughout each chapterNew in this edition:Completely revised with a new five part structure: Foundations; Principles; Techniques; Analysis; Management and PolicyAll new personality boxes of current GIS practitionersNew chapters on Distributed GIS, Map Production, Geovisualization, Modeling, and Managing GIS

2,210 citations


Journal ArticleDOI
TL;DR: An overview of basic relations and formulas concerning airborne laser scanning is given and a separate discussion is devoted to the accuracy of 3D positioning and the factors influencing it.
Abstract: An overview of basic relations and formulas concerning airborne laser scanning is given. They are divided into two main parts, the first treating lasers and laser ranging, and the second one referring to airborne laser scanning. A separate discussion is devoted to the accuracy of 3D positioning and the factors influencing it. Examples are given for most relations, using typical values for ALS and assuming an airplane platform. The relations refer mostly to pulse lasers, but CW lasers are also treated. Different scan patterns, especially parallel lines, are treated. Due to the complexity of the relations, some formulas represent approximations or are based on assumptions like constant flying speed, vertical scan, etc.

816 citations


Journal ArticleDOI
Peter Axelsson1Institutions (1)
TL;DR: This paper presents some methods and algorithms concerning filtering for determining the ground surface, DEM, classification of buildings for 3D City Models and the detection of electrical power lines.
Abstract: Airborne laser scanning systems are opening new possibilities for surveys and documentation of difficult areas and objects, such as dense city areas, forest areas and electrical power lines. Laser scanner systems available on the market are presently in a fairly mature state of art while the processing of airborne laser scanner data still is in an early phase of development. To come from irregular 3D point clouds to useful representations and formats for an end-user requires continued research and development of methods and algorithms for interpretation and modelling. This paper presents some methods and algorithms concerning filtering for determining the ground surface, DEM, classification of buildings for 3D City Models and the detection of electrical power lines. The classification algorithms are based on the Minimum Description Length criterion. The use of reflectance data and multiple echoes from the laser scanner is examined and found to be useful in many applications.

747 citations


Additional excerpts

  • ...The extent of LiDAR point den sity is dependent on fly ing height and system dependent factors such as platform velocity, sampling frequency, and field of view (Axelsson 1999)....

    [...]


Journal ArticleDOI
Hans-Gerd Maas1, George Vosselman1Institutions (1)
TL;DR: Two new techniques for the determination of building models from laser altimetry data are presented, both of which work on the original laser scanner data points without the requirement of an interpolation to a regular grid.
Abstract: Two new techniques for the determination of building models from laser altimetry data are presented. Both techniques work on the original laser scanner data points without the requirement of an interpolation to a regular grid. Available ground plan information may be used, but is not required. Closed solutions for the determination of the parameters of a standard gable roof type building model based on invariant moments of 2 1r2-D point clouds are shown. In addition, the analysis of deviations between point cloud and model does allow for modelling asymmetries such as dorms on a gable roof. By intersecting planar faces nonparametric buildings with more complex roof types can also be modelled. The techniques were applied to a FLI-MAP laser scanner dataset covering an area of 500= 250 m 2 with a density of more than 5 pointsrm 2 . Within this region, all but one building could be modelled. An analysis of the variance of the parameters within a group of buildings indicates a precision in the range of 0.1-0.2 m. q 1999 Elsevier Science B.V. All rights reserved.

483 citations


Journal ArticleDOI
Norbert Haala1, Claus Brenner1Institutions (1)
TL;DR: Two methods for data collection in urban environments are presented and the first combines multispectral imagery and laser altimeter data in an integrated classification for the extraction of buildings, trees and grass-covered areas.
Abstract: In this article, two methods for data collection in urban environments are presented. The first method combines multispectral imagery and laser altimeter data in an integrated classification for the extraction of buildings, trees and grass-covered areas. The second approach uses laser data and 2D ground plan information to obtain 3D reconstructions of buildings.

474 citations


Additional excerpts

  • ...For instance, to generate three-dimensional (3D) reconstructions of buildings in urban areas, Haala and Brenner (1999) proposed the combination of multispectral imagery and laser altimeter data (LiDAR) in an integrated classification....

    [...]


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20211
20204
20181
20174
20162
20154