scispace - formally typeset

Journal ArticleDOI

Evaluation of a new middle-lower tropospheric CO 2 product using data assimilation

02 May 2013-Atmospheric Chemistry and Physics (Copernicus GmbH)-Vol. 13, Iss: 9, pp 4487-4500

Abstract. Atmospheric CO 2 retrievals with peak sensitivity in the mid- to lower troposphere from the Atmospheric Infrared Sounder (AIRS) have been assimilated into the GEOS-5 (Goddard Earth Observing System Model, Version 5) constituent assimilation system for the period 1 January 2005 to 31 December 2006. A corresponding model simulation, using identical initial conditions, circulation, and CO 2 boundary fluxes was also completed. The analyzed and simulated CO 2 fields are compared with surface measurements globally and aircraft measurements over North America. Surface level monthly mean CO 2 values show a marked improvement due to the assimilation in the Southern Hemisphere, while less consistent improvements are seen in the Northern Hemisphere. Mean differences with aircraft observations are reduced at all levels, with the largest decrease occurring in the mid-troposphere. The difference standard deviations are reduced slightly at all levels over the ocean, and all levels except the surface layer over land. These initial experiments indicate that the used channels contain useful information on CO 2 in the middle to lower troposphere. However, the benefits of assimilating these data are reduced over the land surface, where concentrations are dominated by uncertain local fluxes and where the observation density is quite low. Away from these regions, the study demonstrates the power of the data assimilation technique for evaluating data that are not co-located, in that the improvements in mid-tropospheric CO 2 by the sparsely distributed partial-column retrievals are transported by the model to the fixed in situ surface observation locations in more remote areas.

Topics: Troposphere (53%), Data assimilation (52%), Northern Hemisphere (51%), Atmospheric Infrared Sounder (50%)

...read more

Content maybe subject to copyright    Report

Citations
More filters

01 Dec 2012
Abstract: We upscaled FLUXNET observations of carbon dioxide, water, and energy fluxes to the global scale using the machine learning technique, model tree ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5 degrees x 0.5 degrees spatial resolution and a monthly temporal resolution from 1982 to 2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were not as strong (MEf between 0.29 and 0.52). Improved accounting of disturbance and lagged environmental effects, along with improved characterization of errors in the training data set, would contribute most to further reducing uncertainties. Our global estimates of LE (158 +/- 7 J x 10(18) yr(-1)), H (164 +/- 15 J x 10(18) yr(-1)), and GPP (119 +/- 6 Pg C yr(-1)) were similar to independent estimates. Our global TER estimate (96 +/- 6 Pg C yr(-1)) was likely underestimated by 5-10%. Hot spot regions of interannual variability in carbon fluxes occurred in semiarid to semihumid regions and were controlled by moisture supply. Overall, GPP was more important to interannual variability in NEE than TER. Our empirically derived fluxes may be used for calibration and evaluation of land surface process models and for exploratory and diagnostic assessments of the biosphere.

857 citations



Journal ArticleDOI
Abstract: S U M M A R Y We have developed a new geomagnetic data assimilation approach which uses the minimum variance’ estimate for the analysis state, and which models both the forecast (or model output) and observation errors using an empirical approach and parameter tuning. This system is used in a series of assimilation experiments using Gauss coefficients (hereafter referred to as observational data) from the GUFM1 and CM4 fieldmodels for the years 1590–1990.We show that this assimilation system could be used to improve our knowledge of model parameters, model errors and the dynamical consistency of observation errors, by comparing forecasts of the magnetic field with the observations every 20 yr. Statistics of differences between observation and forecast (O − F) are used to determine how forecast accuracy depends on the Rayleigh number, forecast error correlation length scale and an observation error scale factor. Experiments have been carried out which demonstrate that a Rayleigh number of 30 times the critical Rayleigh number produces better geomagnetic forecasts than lower values, with an Ekman number of E = 1.25 × 10−6, which produces a modified magnetic Reynolds number within the parameter domain with an ‘Earth like’ geodynamo. The optimal forecast error correlation length scale is found to be around 90 per cent of the thickness of the outer core, indicating a significant bias in the forecasts. Geomagnetic forecasts are also found to be highly sensitive to estimates of modelled observation errors: Errors that are too small do not lead to the gradual reduction in forecast error with time that is generally expected in a data assimilation system while observation errors that are too large lead to model divergence. Finally, we show that assimilation of L ≤ 3 (or large scale) gauss coefficients can help to improve forecasts of the L > 5 (smaller scale) coefficients, and that these improvements are the result of corrections to the velocity field in the geodynamo model.

14 citations


Journal ArticleDOI
Abstract: . In order to optimize surface CO2 fluxes at grid scales, a regional surface CO2 flux inversion system (Carbon Flux Inversion system and Community Multi-scale Air Quality, CFI-CMAQ) has been developed by applying the ensemble Kalman filter (EnKF) to constrain the CO2 concentrations and applying the ensemble Kalman smoother (EnKS) to optimize the surface CO2 fluxes. The smoothing operator is associated with the atmospheric transport model to constitute a persistence dynamical model to forecast the surface CO2 flux scaling factors. In this implementation, the "signal-to-noise" problem can be avoided; plus, any useful observed information achieved by the current assimilation cycle can be transferred into the next assimilation cycle. Thus, the surface CO2 fluxes can be optimized as a whole at the grid scale in CFI-CMAQ. The performance of CFI-CMAQ was quantitatively evaluated through a set of Observing System Simulation Experiments (OSSEs) by assimilating CO2 retrievals from GOSAT (Greenhouse Gases Observing Satellite). The results showed that the CO2 concentration assimilation using EnKF could constrain the CO2 concentration effectively, illustrating that the simultaneous assimilation of CO2 concentrations can provide convincing CO2 initial analysis fields for CO2 flux inversion. In addition, the CO2 flux optimization using EnKS demonstrated that CFI-CMAQ could, in general, reproduce true fluxes at grid scales with acceptable bias. Two further sets of numerical experiments were conducted to investigate the sensitivities of the inflation factor of scaling factors and the smoother window. The results showed that the ability of CFI-CMAQ to optimize CO2 fluxes greatly relied on the choice of the inflation factor. However, the smoother window had a slight influence on the optimized results. CFI-CMAQ performed very well even with a short lag-window (e.g. 3 days).

14 citations


Cites methods from "Evaluation of a new middle-lower tr..."

  • ...As we know, assimilating CO2 observations from multiple sources can improve the accuracy of simulation results (e.g. Miyazaki, 2009; Liu et al., 2011, 2012; Feng et al., 2011; Tangborn et al., 2013; Huang et al., 2014)....

    [...]

  • ...As we know, assimilating CO2 observations from multiple sources can improve the accuracy of simulation results (e.g. Miyazaki, 2009; Liu et al., 2011, 2012; Feng et al., 2011; Tangborn et al., 2013; Huang et al., 2014)....

    [...]


Posted ContentDOI
Abstract: . The ability to monitor and understand natural and anthropogenic variability in atmospheric carbon dioxide (CO2) is a growing need of many stakeholders across the world. Systems that assimilate satellite observations, given their short latency and dense spatial coverage, into high-resolution global models are valuable, if not essential, tools for addressing this need. A notable drawback of modern assimilation systems is the long latency of many vital input datasets, e.g., inventories, in situ measurements, and reprocessed remote-sensing data can trail the current date by months to years. This paper describes techniques for calibrating surface fluxes derived from satellite observations of the Earth's surface to be consistent with constraints from inventories and in situ CO2 datasets. The techniques are applicable in both short-term forecasts and retrospective simulations, thus taking advantage of the coverage and short latency of satellite data while reproducing the major features of long-term inventory and in situ records. Our approach begins with a standard collection of diagnostic fluxes which incorporate a variety of remote-sensing driver data, viz. vegetation indices, fire radiative power, and nighttime lights. We then apply an empirical sink to calibrate the diagnostic fluxes to match given atmospheric and oceanic growth rates for each year. This step removes coherent, systematic flux errors that produce biases in CO2 which mask the signals an assimilation system hopes to capture. Depending on the simulation mode, the empirical sink uses different choices of atmospheric growth rates: estimates based on observations in retrospective mode and projections based on seasonal forecasts of sea surface temperature in forecasting mode. The retrospective fluxes, when used in simulations with NASA's Goddard Earth Observing System (GEOS), reproduce marine boundary layer measurements with comparable skill to those using fluxes from a modern inversion system. The forecasted fluxes show promising accuracy in their application to the analysis of changes in the carbon cycle as they occur.

9 citations


Cites background from "Evaluation of a new middle-lower tr..."

  • ...This system is currently being extended to assimilate a collection of CO2 datasets (Tangborn et al., 2013; Eldering et al., 2017) including retrievals of column averages from the Greenhouse Gases Observing Satellite (GOSAT; Kuze et al....

    [...]

  • ...This system is currently being extended to assimilate a collection of CO2 datasets (Tangborn et al., 2013; Eldering et al., 2017) including retrievals of column averages from the Greenhouse Gases Observing Satellite (GOSAT; Kuze et al., 2009), Orbiting Carbon Observatory 2 (OCO-2; Crisp et al.,…...

    [...]


References
More filters

Journal ArticleDOI
Abstract: The Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA’s Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA’s Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses. Focusing on the satellite era, from 1979 to the present, MERRA has achieved its goals with significant improvements in precipitation and water vapor climatology. Here, a brief overview of the system and some aspects of its performance, including quality assessment diagnostics from innovation and residual statistics, is given.By comparing MERRA with other updated reanalyses [the interim version of the next ECMWF Re-Analysis (ERA-Interim) and the Climate Forecast System Reanalysis (CFSR)], advances made in this new generation of reanalyses, as well as remaining deficiencies, are identified. Although there is little difference between the new reanalyses i...

4,201 citations


Book
17 Jul 2000
TL;DR: This book treats the inverse problem of remote sounding comprehensively, and discusses a wide range of retrieval methods for extracting atmospheric parameters of interest from the quantities such as thermal emission that can be measured remotely.
Abstract: Remote sounding of the atmosphere has proved to be a fruitful method of obtaining global information about the atmospheres of the earth and planets. This book treats the inverse problem of remote sounding comprehensively, and discusses a wide range of retrieval methods for extracting atmospheric parameters of interest from the quantities such as thermal emission that can be measured remotely. Inverse theory is treated in depth from an estimation-theory point of view, but practical questions are also emphasized, for example designing observing systems to obtain the maximum quantity of information, efficient numerical implementation of algorithms for processing of large quantities of data, error analysis and approaches to the validation of the resulting retrievals, The book is targeted at both graduate students and working scientists.

3,806 citations


"Evaluation of a new middle-lower tr..." refers background or methods in this paper

  • ...Details of this correlation model are given in Stajner et al. (2001) and Tangborn et al. (2009). This results in a state-dependent error covariance because the error standard deviation is proportional to the CO2 fields....

    [...]

  • ...The retrievals are a least squares inversion for linear perturbations around the local ECMWF profile, which results in a mid–lower tropospheric CO2 mixing ratio (see Rodgers, 2000)....

    [...]

  • ...Details of this correlation model are given in Stajner et al. (2001) and Tangborn et al....

    [...]


Journal ArticleDOI
TL;DR: Results from several months of parallel testing with the NMC spectral model have been very encouraging, and favorable features include smoother analysis increments, greatly reduced changes from initialization, and significant improvement of 1-5-day forecasts.
Abstract: At the National Meteorological Center (NMC), a new analysis system is being extensively tested for possible use in the operational global data assimilation system. This analysis system is called the spectral statistical- interpolation (SSI) analysis system because the spectral coefficients used in the NMC spectral model are analyzed directly using the same basic equations as statistical (optimal) interpolation. Results from several months of parallel testing with the NMC spectral model have been very encouraging. Favorable features include smoother analysis increments, greatly reduced changes from initialization, and significant improvement of 1-5-day forecasts. Although the analysis is formulated as a variational problem, the objective function being minimized is formally the same one that forms the basis of all existing optimal interpolation schemes. This objective function is a combination of forecast and observation deviations from the desired analysis, weighted by the invent of the correspon...

1,742 citations


"Evaluation of a new middle-lower tr..." refers methods in this paper

  • ...Engelen et al. (2009) employed the NMC method (Parrish and Derber, 1992) which uses statistics from 24 and 48 h forecasts....

    [...]

  • ...(2009) employed the NMC method (Parrish and Derber, 1992) which uses statistics from 24 and 48 h forecasts....

    [...]


Journal ArticleDOI
Abstract: Biomass burning represents an important source of atmospheric aerosols and greenhouse gases, yet little is known about its interannual variability or the underlying mechanisms regulating this variability at continental to global scales. Here we investigated fire emissions during the 8 year period from 1997 to 2004 using satellite data and the CASA biogeochemical model. Burned area from 2001–2004 was derived using newly available active fire and 500 m. burned area datasets from MODIS following the approach described by Giglio et al. (2006). ATSR and VIRS satellite data were used to extend the burned area time series back in time through 1997. In our analysis we estimated fuel loads, including organic soil layer and peatland fuels, and the net flux from terrestrial ecosystems as the balance between net primary production (NPP), heterotrophic respiration ( R h ), and biomass burning, using time varying inputs of precipitation (PPT), temperature, solar radiation, and satellite-derived fractional absorbed photosynthetically active radiation (fAPAR). For the 1997–2004 period, we found that on average approximately 58 Pg C year −1 was fixed by plants as NPP, and approximately 95% of this was returned back to the atmosphere via R h . Another 4%, or 2.5 Pg C year −1 was emitted by biomass burning; the remainder consisted of losses from fuel wood collection and subsequent burning. At a global scale, burned area and total fire emissions were largely decoupled from year to year. Total carbon emissions tracked burning in forested areas (including deforestation fires in the tropics), whereas burned area was largely controlled by savanna fires that responded to different environmental and human factors. Biomass burning emissions showed large interannual variability with a range of more than 1 Pg C year −1 , with a maximum in 1998 (3.2 Pg C year −1 ) and a minimum in 2000 (2.0 Pg C year −1 ).

1,548 citations


Journal ArticleDOI
07 Feb 2002-Nature
TL;DR: An uptake of CO2 in the southern extratropical ocean less than that estimated from ocean measurements is found, a result that is not sensitive to transport models or methodological approaches, and carbon fluxes integrated over latitudinal zones are strongly constrained by observations in the middle to high latitudes.
Abstract: Information about regional carbon sources and sinks can be derived from variations in observed atmospheric CO2 concentrations via inverse modelling with atmospheric tracer transport models. A consensus has not yet been reached regarding the size and distribution of regional carbon fluxes obtained using this approach, partly owing to the use of several different atmospheric transport models. Here we report estimates of surface-atmosphere CO2 fluxes from an intercomparison of atmospheric CO2 inversion models (the TransCom 3 project), which includes 16 transport models and model variants. We find an uptake of CO2 in the southern extratropical ocean less than that estimated from ocean measurements, a result that is not sensitive to transport models or methodological approaches. We also find a northern land carbon sink that is distributed relatively evenly among the continents of the Northern Hemisphere, but these results show some sensitivity to transport differences among models, especially in how they respond to seasonal terrestrial exchange of CO2. Overall, carbon fluxes integrated over latitudinal zones are strongly constrained by observations in the middle to high latitudes. Further significant constraints to our understanding of regional carbon fluxes will therefore require improvements in transport models and expansion of the CO2 observation network within the tropics.

1,040 citations


Related Papers (5)