scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium

Zechen Wu1, Yi Zhu1, Weiya Huang1, Chengwu Zhang1, Tao Li1, Yuanming Zhang1, Aifen Li1 
01 Apr 2012-Bioresource Technology (Bioresour Technol)-Vol. 110, pp 496-502
TL;DR: This study revealed that the microalgal biomass concentrations and released polysaccharide from microalgae could influence the flocculation efficiencies, and neutralizing pH and then supplementing nutrients allowed the flocculated medium to maintain an approximate growth yield to that of the fresh medium in algal cultivation.
About: This article is published in Bioresource Technology.The article was published on 2012-04-01. It has received 351 citations till now. The article focuses on the topics: Flocculation & Chlorococcum.
Citations
More filters
Journal ArticleDOI
TL;DR: An empirical and critical analysis on the potential of translating research findings from laboratory scale trials to full scale application and current methods for biomass harvesting and lipid extraction are critically evaluated.

755 citations

Journal ArticleDOI
TL;DR: The challenges and possible solutions for flocculation are overviewed, which are seen as a promising low-cost harvesting method for flocculating microalgae.

751 citations

01 Jan 2013
TL;DR: In this article, the authors present an empirical and critical analysis on the potential of translating research findings from laboratory-scale trials to full-scale application in bio-diesel production.
Abstract: The economically significant production of carbon-neutral biodiesel from microalgae has been hailed as the ultimate alternative to depleting resources of petro-diesel due to its high cellular concentration of lipids, resources and economic sustainability and overall potential advantages over other sources of biofuels. Pertinent questions however need to be answered on the commercial viability of large scale production of biodiesel from microalgae. Vital steps need to be critically analysed at each stage. Isolation of microalgae should be based on the question of whether marine or freshwater microalgae, cultures from collections or indigenous wild types are best suited for large scale production. Furthermore, the determination of initial sampling points play a pivotal role in the determination of strain selection as well as strain viability. The screening process should identify, purify and select lipid producing strains. Are natural strains or stressed strains higher in lipid productivity? The synergistic interactions that occur naturally between algae and other microorganisms cannot be ignored. A lot of literature is available on the downstream processing of microalgae but a few reports are available on the upstream processing of microalgae for biomass and lipid production for biodiesel production. We present in this review an empirical and critical analysis on the potential of translating research findings from laboratory scale trials to full scale application. The move from laboratory to large scale microalgal cultivation requires careful planning. It is imperative to do extensive pre-pilot demonstration trials and formulate a suitable trajectory for possible data extrapolation for large scale experimental designs. The pros and cons of the two widely used methods for growing microalgae by photobioreactors or open raceway ponds are discussed in detail. In addition, current methods for biomass harvesting and lipid extraction are critically evaluated. This would be novel approach to economical biodiesel production from microalgae in the near future. Globally, microalgae are largest biomass producers having higher neutral lipid content outcompeting terrestrial plants for biofuel production. However, the viscosities of microalgal oils are usually higher than that of petroleum diesel.

695 citations

Journal ArticleDOI
TL;DR: This comprehensive review article spots the light on one of the most interesting microalga Chlorella vulgaris and assembles the history and a thorough description of its ultrastructure and composition according to growth conditions.
Abstract: Economic and technical problems related to the reduction of petroleum resources require the valorisation of renewable raw material Recently, microalgae emerged as promising alternative feedstock that represents an enormous biodiversity with multiple benefits exceeding the potential of conventional agricultural feedstock Thus, this comprehensive review article spots the light on one of the most interesting microalga Chlorella vulgaris It assembles the history and a thorough description of its ultrastructure and composition according to growth conditions The harvesting techniques are presented in relation to the novel algo-refinery concept, with their technological advancements and potential applications in the market

677 citations

Journal ArticleDOI
16 Aug 2012-Nature
TL;DR: Algae biofuels can be a more sustainable alternative to fossil fuels if sourced from organisms that can be farmed without using valuable arable land, and strain development and process engineering are needed.
Abstract: Modern life is intimately linked to the availability of fossil fuels, which continue to meet the world's growing energy needs even though their use drives climate change, exhausts finite reserves and contributes to global political strife. Biofuels made from renewable resources could be a more sustainable alternative, particularly if sourced from organisms, such as algae, that can be farmed without using valuable arable land. Strain development and process engineering are needed to make algal biofuels practical and economically viable.

616 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a method was developed to determine submicro amounts of sugars and related substances using a phenol-sulfuric acid reaction, which is useful for the determination of the composition of polysaccharides and their methyl derivatives.
Abstract: Simple sugars, oligosaccharides, polysaccharides, and their derivatives, including the methyl ethers with free or potentially free reducing groups, give an orangeyellow color w-hen treated with phenol and concentrated sulfuric acid. The reaction is sensitive and the color is stable. By use of this phenol-sulfuric acid reaction, a method has been developed to determine submicro amounts of sugars and related substances. In conjunction with paper partition chromatography the method is useful for the determination of the composition of polysaccharides and their methyl derivatives.

45,381 citations

Journal ArticleDOI
Yusuf Chisti1
TL;DR: As demonstrated here, microalgae appear to be the only source of renewable biodiesel that is capable of meeting the global demand for transport fuels.

9,030 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the technologies underpinning microalgae-to-bio-fuels systems, focusing on the biomass production, harvesting, conversion technologies, and the extraction of useful co-products.
Abstract: Sustainability is a key principle in natural resource management, and it involves operational efficiency, minimisation of environmental impact and socio-economic considerations; all of which are interdependent. It has become increasingly obvious that continued reliance on fossil fuel energy resources is unsustainable, owing to both depleting world reserves and the green house gas emissions associated with their use. Therefore, there are vigorous research initiatives aimed at developing alternative renewable and potentially carbon neutral solid, liquid and gaseous biofuels as alternative energy resources. However, alternate energy resources akin to first generation biofuels derived from terrestrial crops such as sugarcane, sugar beet, maize and rapeseed place an enormous strain on world food markets, contribute to water shortages and precipitate the destruction of the world's forests. Second generation biofuels derived from lignocellulosic agriculture and forest residues and from non-food crop feedstocks address some of the above problems; however there is concern over competing land use or required land use changes. Therefore, based on current knowledge and technology projections, third generation biofuels specifically derived from microalgae are considered to be a technically viable alternative energy resource that is devoid of the major drawbacks associated with first and second generation biofuels. Microalgae are photosynthetic microorganisms with simple growing requirements (light, sugars, CO 2 , N, P, and K) that can produce lipids, proteins and carbohydrates in large amounts over short periods of time. These products can be processed into both biofuels and valuable co-products. This study reviewed the technologies underpinning microalgae-to-biofuels systems, focusing on the biomass production, harvesting, conversion technologies, and the extraction of useful co-products. It also reviewed the synergistic coupling of microalgae propagation with carbon sequestration and wastewater treatment potential for mitigation of environmental impacts associated with energy conversion and utilisation. It was found that, whereas there are outstanding issues related to photosynthetic efficiencies and biomass output, microalgae-derived biofuels could progressively substitute a significant proportion of the fossil fuels required to meet the growing energy demand.

4,432 citations

Journal ArticleDOI
TL;DR: A brief summary of the current knowledge on oleaginous algae and their fatty acid and TAG biosynthesis, algal model systems and genomic approaches to a better understanding of TAG production, and a historical perspective and path forward for microalgae-based biofuel research and commercialization are provided.
Abstract: Microalgae represent an exceptionally diverse but highly specialized group of micro-organisms adapted to various ecological habitats. Many microalgae have the ability to produce substantial amounts (e.g. 20-50% dry cell weight) of triacylglycerols (TAG) as a storage lipid under photo-oxidative stress or other adverse environmental conditions. Fatty acids, the building blocks for TAGs and all other cellular lipids, are synthesized in the chloroplast using a single set of enzymes, of which acetyl CoA carboxylase (ACCase) is key in regulating fatty acid synthesis rates. However, the expression of genes involved in fatty acid synthesis is poorly understood in microalgae. Synthesis and sequestration of TAG into cytosolic lipid bodies appear to be a protective mechanism by which algal cells cope with stress conditions, but little is known about regulation of TAG formation at the molecular and cellular level. While the concept of using microalgae as an alternative and renewable source of lipid-rich biomass feedstock for biofuels has been explored over the past few decades, a scalable, commercially viable system has yet to emerge. Today, the production of algal oil is primarily confined to high-value specialty oils with nutritional value, rather than commodity oils for biofuel. This review provides a brief summary of the current knowledge on oleaginous algae and their fatty acid and TAG biosynthesis, algal model systems and genomic approaches to a better understanding of TAG production, and a historical perspective and path forward for microalgae-based biofuel research and commercialization.

3,479 citations

Journal ArticleDOI
TL;DR: A key to pharmaceutical and medicinal chemistry literature and training of literature chemists are discussed in the Advances series as mentioned in this paper, with the focus on the training of chemistry chemists, which is a subject of great interest to the literature chemist.
Abstract: NUMBERS 16 and 17 in the Advances series have made their appearance. The titles are: "A Key to Pharmaceutical and Medicinal Chemistry Literature" and "Training of literature Chemists." The first is a collection of papers presented before the Divisions of Chemical Literature and Medicinal Chemistry; the second consists of papers given before a joint meeting of the Divisions of Chemical Education and Chemical Literature. Glancing at the titles of subjects covered to date in the Advances series, it becomes evident that a substantial literature is being built by literature chemists, largely through the divisions in the AMERICAN CHEMICAL SOCIETY. Number 4, "Searching the Chemical Literature," has been reprinted several times and frequently is referred to as the "bible" of literature chemists. Number 10, "Literature Resources for Chemical Process Industries," is in much demand. Nomenclature is a subject of direct importance to the literature chemist, and Number 8, entitled "Chemical Nomenclature," and ...

3,188 citations