scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Evaluation of the Liquefaction Potential Index for Assessing Liquefaction Hazard in Christchurch, New Zealand

01 Jul 2014-Journal of Geotechnical and Geoenvironmental Engineering (American Society of Civil Engineers)-Vol. 140, Iss: 7, pp 04014032
TL;DR: In this article, the authors evaluated the performance of LPI in predicting the occurrence and severity of surficial liquefaction manifestations, and found that LPI is generally effective in predicting moderate-to-severe liquidification manifestations, but its utility diminishes for predicting less severe manifestations.
Abstract: While the liquefaction potential index (LPI) has been used to characterize liquefaction hazards worldwide, calibration of LPI to observed liquefaction severity is limited, and the efficacy of the LPI framework and accuracy of derivative liquefaction hazard maps are thus uncertain. Herein, utilizing cone penetration test soundings from nearly 1,200 sites, in conjunction with field observations following the Darfield and Christchurch, New Zealand, earthquakes, this study evaluates the performance of LPI in predicting the occurrence and severity of surficial liquefaction manifestations. It was found that LPI is generally effective in predicting moderate-to-severe liquefaction manifestations, but its utility diminishes for predicting less severe manifestations. Additionally, it was found that LPI should be used with caution in locations susceptible to lateral spreading, because LPI may inconsistently predict its occurrence. A relationship between overpredictions of liquefaction severity and profiles h...
Citations
More filters
Journal ArticleDOI
TL;DR: The 2010-2011 Canterbury Earthquake Sequence (CES) as discussed by the authors is one of the best recorded historical earthquake sequences, including the moment magnitude (M w ) 7.1 Darfield earthquake and M w 6.2, 6.0, 5.9 and 5.8 aftershocks.

106 citations

Journal ArticleDOI
TL;DR: In this article, a coupled-bridge-soil-foundation model is adopted to perform an in-depth investigation of optimal seismic intensity measures among 26 IMs found in the literature.
Abstract: Seismic intensity measures (IMs) perform a pivotal role in probabilistic seismic demand modeling. Many studies investigated appropriate IMs for structures without considering soil liquefaction potential. In particular, optimal IMs for probabilistic seismic demand modeling of bridges in liquefied and laterally spreading ground are not comprehensively studied. In this paper, a coupled-bridge-soil-foundation model is adopted to perform an in-depth investigation of optimal IMs among 26 IMs found in the literature. Uncertainties in structural and geotechnical material properties and geometric parameters of bridges are considered in the model to produce comprehensive scenarios. Metrics such as efficiency, practicality, proficiency, sufficiency and hazard computability are assessed for different demand parameters. Moreover, an information theory based approach is adopted to evaluate the relative sufficiency among the studied IMs. Results indicate the superiority of velocity-related IMs compared to acceleration, displacement and time-related ones. In particular, Housner spectrum intensity (HI), spectral acceleration at 2.0 s (S a-20), peak ground velocity (PGV), cumulative absolute velocity (CAV) and its modified version (CAV 5) are the optimal IMs. Conversely, Arias intensity (I a ) and shaking intensity rate (SIR) which are measures often used in liquefaction evaluation or related structural demand assessment demonstrate very low correlations with the demand parameters. Besides, the geometric parameters do not evidently affect the choice of optimal IMs. In addition, the information theory based sufficiency ranking of IMs shows an identical result to that with the correlation measure based on coefficient of determination (R 2). This means that R 2 can be used to preliminarily assess the relative sufficiency of IMs.

106 citations


Cites background from "Evaluation of the Liquefaction Pote..."

  • ...Severe damage in pile-supported bridges caused by liquefaction and associated lateral spreading effects have been reported in recent strong earthquakes such as the 2010 Maule Earthquake (Bray et al. 2010), the 2011 Canterbury Earthquake (Maurer et al. 2014) and the 2011 Tohoku Earthquake (Cox et al. 2013)....

    [...]

  • ...2010), the 2011 Canterbury Earthquake (Maurer et al. 2014) and the 2011 Tohoku Earthquake (Cox et al....

    [...]

  • ...…in pile-supported bridges caused by liquefaction and associated lateral spreading effects have been reported in recent strong earthquakes such as the 2010 Maule Earthquake (Bray et al. 2010), the 2011 Canterbury Earthquake (Maurer et al. 2014) and the 2011 Tohoku Earthquake (Cox et al. 2013)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, detailed geotechnical characterization and in-depth assessment using seismic effective stress analyses are presented for 55 liquefaction case histories (sites) from Christchurch.

97 citations

Journal ArticleDOI
TL;DR: The 2010-2011 Canterbury earthquake sequence began with the 4 September 2010, Mw7.1 Darfield earthquake and includes up to ten events that induced liquefaction.
Abstract: The 2010–2011 Canterbury earthquake sequence began with the 4 September 2010, Mw7.1 Darfield earthquake and includes up to ten events that induced liquefaction. Most notably, widespread liquefactio...

90 citations


Cites result from "Evaluation of the Liquefaction Pote..."

  • ...This approach is similar to that used by Green et al. (2011) and Maurer et al. (2014)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the insights the boundary curves proposed by Ishihara may provide for improving the existing LPI framework and proposed a novel Ishihara-inspired index, LPIISH.

70 citations

References
More filters
Book
01 Jan 1982
TL;DR: In this article, the authors present an overview of the basic concepts of multivariate analysis, including matrix algebra and random vectors, as well as a strategy for analyzing multivariate models.
Abstract: (NOTE: Each chapter begins with an Introduction, and concludes with Exercises and References.) I. GETTING STARTED. 1. Aspects of Multivariate Analysis. Applications of Multivariate Techniques. The Organization of Data. Data Displays and Pictorial Representations. Distance. Final Comments. 2. Matrix Algebra and Random Vectors. Some Basics of Matrix and Vector Algebra. Positive Definite Matrices. A Square-Root Matrix. Random Vectors and Matrices. Mean Vectors and Covariance Matrices. Matrix Inequalities and Maximization. Supplement 2A Vectors and Matrices: Basic Concepts. 3. Sample Geometry and Random Sampling. The Geometry of the Sample. Random Samples and the Expected Values of the Sample Mean and Covariance Matrix. Generalized Variance. Sample Mean, Covariance, and Correlation as Matrix Operations. Sample Values of Linear Combinations of Variables. 4. The Multivariate Normal Distribution. The Multivariate Normal Density and Its Properties. Sampling from a Multivariate Normal Distribution and Maximum Likelihood Estimation. The Sampling Distribution of 'X and S. Large-Sample Behavior of 'X and S. Assessing the Assumption of Normality. Detecting Outliners and Data Cleaning. Transformations to Near Normality. II. INFERENCES ABOUT MULTIVARIATE MEANS AND LINEAR MODELS. 5. Inferences About a Mean Vector. The Plausibility of ...m0 as a Value for a Normal Population Mean. Hotelling's T 2 and Likelihood Ratio Tests. Confidence Regions and Simultaneous Comparisons of Component Means. Large Sample Inferences about a Population Mean Vector. Multivariate Quality Control Charts. Inferences about Mean Vectors When Some Observations Are Missing. Difficulties Due To Time Dependence in Multivariate Observations. Supplement 5A Simultaneous Confidence Intervals and Ellipses as Shadows of the p-Dimensional Ellipsoids. 6. Comparisons of Several Multivariate Means. Paired Comparisons and a Repeated Measures Design. Comparing Mean Vectors from Two Populations. Comparison of Several Multivariate Population Means (One-Way MANOVA). Simultaneous Confidence Intervals for Treatment Effects. Two-Way Multivariate Analysis of Variance. Profile Analysis. Repealed Measures, Designs, and Growth Curves. Perspectives and a Strategy for Analyzing Multivariate Models. 7. Multivariate Linear Regression Models. The Classical Linear Regression Model. Least Squares Estimation. Inferences About the Regression Model. Inferences from the Estimated Regression Function. Model Checking and Other Aspects of Regression. Multivariate Multiple Regression. The Concept of Linear Regression. Comparing the Two Formulations of the Regression Model. Multiple Regression Models with Time Dependant Errors. Supplement 7A The Distribution of the Likelihood Ratio for the Multivariate Regression Model. III. ANALYSIS OF A COVARIANCE STRUCTURE. 8. Principal Components. Population Principal Components. Summarizing Sample Variation by Principal Components. Graphing the Principal Components. Large-Sample Inferences. Monitoring Quality with Principal Components. Supplement 8A The Geometry of the Sample Principal Component Approximation. 9. Factor Analysis and Inference for Structured Covariance Matrices. The Orthogonal Factor Model. Methods of Estimation. Factor Rotation. Factor Scores. Perspectives and a Strategy for Factor Analysis. Structural Equation Models. Supplement 9A Some Computational Details for Maximum Likelihood Estimation. 10. Canonical Correlation Analysis Canonical Variates and Canonical Correlations. Interpreting the Population Canonical Variables. The Sample Canonical Variates and Sample Canonical Correlations. Additional Sample Descriptive Measures. Large Sample Inferences. IV. CLASSIFICATION AND GROUPING TECHNIQUES. 11. Discrimination and Classification. Separation and Classification for Two Populations. Classifications with Two Multivariate Normal Populations. Evaluating Classification Functions. Fisher's Discriminant Function...nSeparation of Populations. Classification with Several Populations. Fisher's Method for Discriminating among Several Populations. Final Comments. 12. Clustering, Distance Methods and Ordination. Similarity Measures. Hierarchical Clustering Methods. Nonhierarchical Clustering Methods. Multidimensional Scaling. Correspondence Analysis. Biplots for Viewing Sample Units and Variables. Procustes Analysis: A Method for Comparing Configurations. Appendix. Standard Normal Probabilities. Student's t-Distribution Percentage Points. ...c2 Distribution Percentage Points. F-Distribution Percentage Points. F-Distribution Percentage Points (...a = .10). F-Distribution Percentage Points (...a = .05). F-Distribution Percentage Points (...a = .01). Data Index. Subject Index.

11,697 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the basic concepts of multivariate analysis, including matrix algebra and random vectors, as well as a strategy for analyzing multivariate models.
Abstract: (NOTE: Each chapter begins with an Introduction, and concludes with Exercises and References.) I. GETTING STARTED. 1. Aspects of Multivariate Analysis. Applications of Multivariate Techniques. The Organization of Data. Data Displays and Pictorial Representations. Distance. Final Comments. 2. Matrix Algebra and Random Vectors. Some Basics of Matrix and Vector Algebra. Positive Definite Matrices. A Square-Root Matrix. Random Vectors and Matrices. Mean Vectors and Covariance Matrices. Matrix Inequalities and Maximization. Supplement 2A Vectors and Matrices: Basic Concepts. 3. Sample Geometry and Random Sampling. The Geometry of the Sample. Random Samples and the Expected Values of the Sample Mean and Covariance Matrix. Generalized Variance. Sample Mean, Covariance, and Correlation as Matrix Operations. Sample Values of Linear Combinations of Variables. 4. The Multivariate Normal Distribution. The Multivariate Normal Density and Its Properties. Sampling from a Multivariate Normal Distribution and Maximum Likelihood Estimation. The Sampling Distribution of 'X and S. Large-Sample Behavior of 'X and S. Assessing the Assumption of Normality. Detecting Outliners and Data Cleaning. Transformations to Near Normality. II. INFERENCES ABOUT MULTIVARIATE MEANS AND LINEAR MODELS. 5. Inferences About a Mean Vector. The Plausibility of ...m0 as a Value for a Normal Population Mean. Hotelling's T 2 and Likelihood Ratio Tests. Confidence Regions and Simultaneous Comparisons of Component Means. Large Sample Inferences about a Population Mean Vector. Multivariate Quality Control Charts. Inferences about Mean Vectors When Some Observations Are Missing. Difficulties Due To Time Dependence in Multivariate Observations. Supplement 5A Simultaneous Confidence Intervals and Ellipses as Shadows of the p-Dimensional Ellipsoids. 6. Comparisons of Several Multivariate Means. Paired Comparisons and a Repeated Measures Design. Comparing Mean Vectors from Two Populations. Comparison of Several Multivariate Population Means (One-Way MANOVA). Simultaneous Confidence Intervals for Treatment Effects. Two-Way Multivariate Analysis of Variance. Profile Analysis. Repealed Measures, Designs, and Growth Curves. Perspectives and a Strategy for Analyzing Multivariate Models. 7. Multivariate Linear Regression Models. The Classical Linear Regression Model. Least Squares Estimation. Inferences About the Regression Model. Inferences from the Estimated Regression Function. Model Checking and Other Aspects of Regression. Multivariate Multiple Regression. The Concept of Linear Regression. Comparing the Two Formulations of the Regression Model. Multiple Regression Models with Time Dependant Errors. Supplement 7A The Distribution of the Likelihood Ratio for the Multivariate Regression Model. III. ANALYSIS OF A COVARIANCE STRUCTURE. 8. Principal Components. Population Principal Components. Summarizing Sample Variation by Principal Components. Graphing the Principal Components. Large-Sample Inferences. Monitoring Quality with Principal Components. Supplement 8A The Geometry of the Sample Principal Component Approximation. 9. Factor Analysis and Inference for Structured Covariance Matrices. The Orthogonal Factor Model. Methods of Estimation. Factor Rotation. Factor Scores. Perspectives and a Strategy for Factor Analysis. Structural Equation Models. Supplement 9A Some Computational Details for Maximum Likelihood Estimation. 10. Canonical Correlation Analysis Canonical Variates and Canonical Correlations. Interpreting the Population Canonical Variables. The Sample Canonical Variates and Sample Canonical Correlations. Additional Sample Descriptive Measures. Large Sample Inferences. IV. CLASSIFICATION AND GROUPING TECHNIQUES. 11. Discrimination and Classification. Separation and Classification for Two Populations. Classifications with Two Multivariate Normal Populations. Evaluating Classification Functions. Fisher's Discriminant Function...nSeparation of Populations. Classification with Several Populations. Fisher's Method for Discriminating among Several Populations. Final Comments. 12. Clustering, Distance Methods and Ordination. Similarity Measures. Hierarchical Clustering Methods. Nonhierarchical Clustering Methods. Multidimensional Scaling. Correspondence Analysis. Biplots for Viewing Sample Units and Variables. Procustes Analysis: A Method for Comparing Configurations. Appendix. Standard Normal Probabilities. Student's t-Distribution Percentage Points. ...c2 Distribution Percentage Points. F-Distribution Percentage Points. F-Distribution Percentage Points (...a = .10). F-Distribution Percentage Points (...a = .05). F-Distribution Percentage Points (...a = .01). Data Index. Subject Index.

10,148 citations

Journal ArticleDOI
TL;DR: In this paper, a new general class of local indicators of spatial association (LISA) is proposed, which allow for the decomposition of global indicators, such as Moran's I, into the contribution of each observation.
Abstract: The capabilities for visualization, rapid data retrieval, and manipulation in geographic information systems (GIS) have created the need for new techniques of exploratory data analysis that focus on the “spatial” aspects of the data. The identification of local patterns of spatial association is an important concern in this respect. In this paper, I outline a new general class of local indicators of spatial association (LISA) and show how they allow for the decomposition of global indicators, such as Moran's I, into the contribution of each observation. The LISA statistics serve two purposes. On one hand, they may be interpreted as indicators of local pockets of nonstationarity, or hot spots, similar to the Gi and G*i statistics of Getis and Ord (1992). On the other hand, they may be used to assess the influence of individual locations on the magnitude of the global statistic and to identify “outliers,” as in Anselin's Moran scatterplot (1993a). An initial evaluation of the properties of a LISA statistic is carried out for the local Moran, which is applied in a study of the spatial pattern of conflict for African countries and in a number of Monte Carlo simulations.

8,933 citations

Journal ArticleDOI
TL;DR: Significant factors affecting the liquefaction (or cyclic mobility) potential of sands during earthquakes are identified, and a simplified procedure for evaluating the potential of sand during earthquakes is presented as mentioned in this paper.
Abstract: Significant factors affecting the liquefaction (or cyclic mobility) potential of sands during earthquakes are identified, and a simplified procedure for evaluating liquefaction potential which will take these factors into account is presented Available field data concerning the liquefaction or nonliquefaction behavior of sands during earthquakes is assembled and compared with evaluations of performance using the simplified procedure It is suggested that even the limited available field data can provide a useful guide to the probable performance of other sand deposits, that the proposed method of presenting the data provides a useful framework for evaluating past experiences of sand liquefaction during earthquakes and that the simplified evaluation procedure provides a reasonably good means for extending previous field observations to new situations When greater accuracy is justified, the simplified liquefaction evaluation procedure can readily be supplemented by test data on particular soils or by ground response analyses to provide more definitive evaluations

2,250 citations