scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Evaporation-induced flow around a droplet in different gases

26 Sep 2019-Physics of Fluids (AIP Publishing LLCAIP Publishing)-Vol. 31, Iss: 9, pp 092109
TL;DR: In this article, the influence of the ambient gas on the evaporation induced flow around a droplet at atmospheric conditions was investigated, and it was shown that the evapse-induced flow in these gases for different liquids was measured using particle image velocimetry.
Abstract: It is known from recent studies that evaporation induces flow around a droplet at atmospheric conditions. This flow is visible even for slowly evaporating liquids like water. In the present study, we investigate the influence of the ambient gas on the evaporating droplet. We observe from the experiments that the rate of evaporation at atmospheric temperature and pressure decreases in a heavier ambient gas. The evaporation-induced flow in these gases for different liquids is measured using particle image velocimetry and found to be very different from each other. However, the width of the disturbed zone around the droplet is seen to be independent of the evaporating liquid and the size of the needle (for the range of needle diameters studied), and only depends on the ambient gas used.It is known from recent studies that evaporation induces flow around a droplet at atmospheric conditions. This flow is visible even for slowly evaporating liquids like water. In the present study, we investigate the influence of the ambient gas on the evaporating droplet. We observe from the experiments that the rate of evaporation at atmospheric temperature and pressure decreases in a heavier ambient gas. The evaporation-induced flow in these gases for different liquids is measured using particle image velocimetry and found to be very different from each other. However, the width of the disturbed zone around the droplet is seen to be independent of the evaporating liquid and the size of the needle (for the range of needle diameters studied), and only depends on the ambient gas used.
Citations
More filters
Journal ArticleDOI
Ki Hyun Lee1, Dong Jun Kang1, Wonsik Eom1, Hyeonhoo Lee1, Tae Hee Han1 
TL;DR: In this paper, a nanocapillary membrane containing both nanopores and nanochannels based on an assembly of holey graphene oxide (HGO) nanosheets was constructed to enable water molecules to permeate and simultaneously evaporate from the nanostructure.

23 citations

Journal ArticleDOI
TL;DR: In this article , a nanocapillary membrane containing both nanopores and nanochannels based on an assembly of holey graphene oxide (HGO) nanosheets was proposed to enable water molecules to permeate and simultaneously evaporate from the nanostructure.

19 citations

Journal ArticleDOI
TL;DR: In this article , a highly flexible and efficient evaporation-induced electricity generator (EIEG) that dexterously exploits the directional water capillary flow inside the silicon nanowires (SiNWs) mesh nanopores is developed.

13 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the influence of the suspender on the evaporation of droplets under quiescent atmospheric conditions was studied experimentally using pendant droplets of ethanol (volatile) and water (nonvolatile).

8 citations

Journal ArticleDOI
Mark Jermy1
TL;DR: In this article, an inexpensive device for generating fogs of micron-sized droplets is described, which is easily constructed and suitable for liquids containing particulates, seeding high-pressure environments and laser Doppler anemometry, and particle imaging velocimetry.
Abstract: An inexpensive device for generating fogs of micron-sized droplets is described. The liquid does not pass through small orifices. It is easily constructed and suitable for liquids containing particulates, seeding high-pressure environments and laser Doppler anemometry, and particle imaging velocimetry. Phase Doppler anemometry measurements show size distributions as a function of pressure for three working fluids. The device consistently produced a narrow size range with a mean diameter of a few microns.

6 citations

Journal ArticleDOI

2 citations