scispace - formally typeset
Search or ask a question
Book ChapterDOI

Evasion Attacks against Machine Learning at Test Time

TL;DR: In this paper, the authors present a simple but effective gradient-based approach that can be exploited to systematically assess the security of several, widely-used classification algorithms against evasion attacks.
Abstract: In security-sensitive applications, the success of machine learning depends on a thorough vetting of their resistance to adversarial data. In one pertinent, well-motivated attack scenario, an adversary may attempt to evade a deployed system at test time by carefully manipulating attack samples. In this work, we present a simple but effective gradient-based approach that can be exploited to systematically assess the security of several, widely-used classification algorithms against evasion attacks. Following a recently proposed framework for security evaluation, we simulate attack scenarios that exhibit different risk levels for the classifier by increasing the attacker's knowledge of the system and her ability to manipulate attack samples. This gives the classifier designer a better picture of the classifier performance under evasion attacks, and allows him to perform a more informed model selection (or parameter setting). We evaluate our approach on the relevant security task of malware detection in PDF files, and show that such systems can be easily evaded. We also sketch some countermeasures suggested by our analysis.

Content maybe subject to copyright    Report

Citations
More filters
Posted Content
TL;DR: This work studies the adversarial robustness of neural networks through the lens of robust optimization, and suggests the notion of security against a first-order adversary as a natural and broad security guarantee.
Abstract: Recent work has demonstrated that deep neural networks are vulnerable to adversarial examples---inputs that are almost indistinguishable from natural data and yet classified incorrectly by the network. In fact, some of the latest findings suggest that the existence of adversarial attacks may be an inherent weakness of deep learning models. To address this problem, we study the adversarial robustness of neural networks through the lens of robust optimization. This approach provides us with a broad and unifying view on much of the prior work on this topic. Its principled nature also enables us to identify methods for both training and attacking neural networks that are reliable and, in a certain sense, universal. In particular, they specify a concrete security guarantee that would protect against any adversary. These methods let us train networks with significantly improved resistance to a wide range of adversarial attacks. They also suggest the notion of security against a first-order adversary as a natural and broad security guarantee. We believe that robustness against such well-defined classes of adversaries is an important stepping stone towards fully resistant deep learning models. Code and pre-trained models are available at this https URL and this https URL.

5,789 citations

Book ChapterDOI
08 Jul 2016
TL;DR: It is found that a large fraction of adversarial examples are classified incorrectly even when perceived through the camera, which shows that even in physical world scenarios, machine learning systems are vulnerable to adversarialExamples.
Abstract: Most existing machine learning classifiers are highly vulnerable to adversarial examples. An adversarial example is a sample of input data which has been modified very slightly in a way that is intended to cause a machine learning classifier to misclassify it. In many cases, these modifications can be so subtle that a human observer does not even notice the modification at all, yet the classifier still makes a mistake. Adversarial examples pose security concerns because they could be used to perform an attack on machine learning systems, even if the adversary has no access to the underlying model. Up to now, all previous work have assumed a threat model in which the adversary can feed data directly into the machine learning classifier. This is not always the case for systems operating in the physical world, for example those which are using signals from cameras and other sensors as an input. This paper shows that even in such physical world scenarios, machine learning systems are vulnerable to adversarial examples. We demonstrate this by feeding adversarial images obtained from cell-phone camera to an ImageNet Inception classifier and measuring the classification accuracy of the system. We find that a large fraction of adversarial examples are classified incorrectly even when perceived through the camera.

3,776 citations

Journal ArticleDOI
TL;DR: In this paper, a taxonomy of recent contributions related to explainability of different machine learning models, including those aimed at explaining Deep Learning methods, is presented, and a second dedicated taxonomy is built and examined in detail.

2,827 citations

Proceedings ArticleDOI
02 Apr 2017
TL;DR: This work introduces the first practical demonstration of an attacker controlling a remotely hosted DNN with no such knowledge, and finds that this black-box attack strategy is capable of evading defense strategies previously found to make adversarial example crafting harder.
Abstract: Machine learning (ML) models, e.g., deep neural networks (DNNs), are vulnerable to adversarial examples: malicious inputs modified to yield erroneous model outputs, while appearing unmodified to human observers. Potential attacks include having malicious content like malware identified as legitimate or controlling vehicle behavior. Yet, all existing adversarial example attacks require knowledge of either the model internals or its training data. We introduce the first practical demonstration of an attacker controlling a remotely hosted DNN with no such knowledge. Indeed, the only capability of our black-box adversary is to observe labels given by the DNN to chosen inputs. Our attack strategy consists in training a local model to substitute for the target DNN, using inputs synthetically generated by an adversary and labeled by the target DNN. We use the local substitute to craft adversarial examples, and find that they are misclassified by the targeted DNN. To perform a real-world and properly-blinded evaluation, we attack a DNN hosted by MetaMind, an online deep learning API. We find that their DNN misclassifies 84.24% of the adversarial examples crafted with our substitute. We demonstrate the general applicability of our strategy to many ML techniques by conducting the same attack against models hosted by Amazon and Google, using logistic regression substitutes. They yield adversarial examples misclassified by Amazon and Google at rates of 96.19% and 88.94%. We also find that this black-box attack strategy is capable of evading defense strategies previously found to make adversarial example crafting harder.

2,712 citations

Posted Content
TL;DR: In this paper, the authors formalize the space of adversaries against deep neural networks and introduce a novel class of algorithms to craft adversarial samples based on a precise understanding of the mapping between inputs and outputs of DNNs.
Abstract: Deep learning takes advantage of large datasets and computationally efficient training algorithms to outperform other approaches at various machine learning tasks. However, imperfections in the training phase of deep neural networks make them vulnerable to adversarial samples: inputs crafted by adversaries with the intent of causing deep neural networks to misclassify. In this work, we formalize the space of adversaries against deep neural networks (DNNs) and introduce a novel class of algorithms to craft adversarial samples based on a precise understanding of the mapping between inputs and outputs of DNNs. In an application to computer vision, we show that our algorithms can reliably produce samples correctly classified by human subjects but misclassified in specific targets by a DNN with a 97% adversarial success rate while only modifying on average 4.02% of the input features per sample. We then evaluate the vulnerability of different sample classes to adversarial perturbations by defining a hardness measure. Finally, we describe preliminary work outlining defenses against adversarial samples by defining a predictive measure of distance between a benign input and a target classification.

1,789 citations

References
More filters
Proceedings ArticleDOI
21 Oct 2011
TL;DR: In this article, the authors discuss an emerging field of study: adversarial machine learning (AML), the study of effective machine learning techniques against an adversarial opponent, and give a taxonomy for classifying attacks against online machine learning algorithms.
Abstract: In this paper (expanded from an invited talk at AISEC 2010), we discuss an emerging field of study: adversarial machine learning---the study of effective machine learning techniques against an adversarial opponent. In this paper, we: give a taxonomy for classifying attacks against online machine learning algorithms; discuss application-specific factors that limit an adversary's capabilities; introduce two models for modeling an adversary's capabilities; explore the limits of an adversary's knowledge about the algorithm, feature space, training, and input data; explore vulnerabilities in machine learning algorithms; discuss countermeasures against attacks; introduce the evasion challenge; and discuss privacy-preserving learning techniques.

947 citations

Proceedings ArticleDOI
22 Aug 2004
TL;DR: This paper views classification as a game between the classifier and the adversary, and produces a classifier that is optimal given the adversary's optimal strategy, and experiments show that this approach can greatly outperform a classifiers learned in the standard way.
Abstract: Essentially all data mining algorithms assume that the data-generating process is independent of the data miner's activities. However, in many domains, including spam detection, intrusion detection, fraud detection, surveillance and counter-terrorism, this is far from the case: the data is actively manipulated by an adversary seeking to make the classifier produce false negatives. In these domains, the performance of a classifier can degrade rapidly after it is deployed, as the adversary learns to defeat it. Currently the only solution to this is repeated, manual, ad hoc reconstruction of the classifier. In this paper we develop a formal framework and algorithms for this problem. We view classification as a game between the classifier and the adversary, and produce a classifier that is optimal given the adversary's optimal strategy. Experiments in a spam detection domain show that this approach can greatly outperform a classifier learned in the standard way, and (within the parameters of the problem) automatically adapt the classifier to the adversary's evolving manipulations.

944 citations

Proceedings ArticleDOI
21 Mar 2006
TL;DR: A taxonomy of different types of attacks on machine learning techniques and systems, a variety of defenses against those attacks, and an analytical model giving a lower bound on attacker's work function are provided.
Abstract: Machine learning systems offer unparalled flexibility in dealing with evolving input in a variety of applications, such as intrusion detection systems and spam e-mail filtering. However, machine learning algorithms themselves can be a target of attack by a malicious adversary. This paper provides a framework for answering the question, "Can machine learning be secure?" Novel contributions of this paper include a taxonomy of different types of attacks on machine learning techniques and systems, a variety of defenses against those attacks, a discussion of ideas that are important to security for machine learning, an analytical model giving a lower bound on attacker's work function, and a list of open problems.

853 citations

Proceedings ArticleDOI
21 Aug 2005
TL;DR: This paper introduces the adversarial classifier reverse engineering (ACRE) learning problem, the task of learning sufficient information about a classifier to construct adversarial attacks, and presents efficient algorithms for reverse engineering linear classifiers with either continuous or Boolean features.
Abstract: Many classification tasks, such as spam filtering, intrusion detection, and terrorism detection, are complicated by an adversary who wishes to avoid detection. Previous work on adversarial classification has made the unrealistic assumption that the attacker has perfect knowledge of the classifier [2]. In this paper, we introduce the adversarial classifier reverse engineering (ACRE) learning problem, the task of learning sufficient information about a classifier to construct adversarial attacks. We present efficient algorithms for reverse engineering linear classifiers with either continuous or Boolean features and demonstrate their effectiveness using real data from the domain of spam filtering.

815 citations