scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles

TL;DR: Evidence is provided of inducing an RNAi mechanism of action in a human from the delivered siRNA and the presence of an mRNA fragment that demonstrates that siRNA-mediated mRNA cleavage occurs specifically at the site predicted for anRNAi mechanism from a patient who received the highest dose of the nanoparticles.
Abstract: Therapeutics that are designed to engage RNA interference (RNAi) pathways have the potential to provide new, major ways of imparting therapy to patients. Long, double-stranded RNAs were first shown to mediate RNAi in Caenorhabditis elegans, and the potential use of RNAi for human therapy has been demonstrated by the finding that small interfering RNAs (siRNAs; approximately 21-base-pair double-stranded RNA) can elicit RNAi in mammalian cells without producing an interferon response. We are at present conducting the first in-human phase I clinical trial involving the systemic administration of siRNA to patients with solid cancers using a targeted, nanoparticle delivery system. Here we provide evidence of inducing an RNAi mechanism of action in a human from the delivered siRNA. Tumour biopsies from melanoma patients obtained after treatment show the presence of intracellularly localized nanoparticles in amounts that correlate with dose levels of the nanoparticles administered (this is, to our knowledge, a first for systemically delivered nanoparticles of any kind). Furthermore, a reduction was found in both the specific messenger RNA (M2 subunit of ribonucleotide reductase (RRM2)) and the protein (RRM2) levels when compared to pre-dosing tissue. Most notably, we detect the presence of an mRNA fragment that demonstrates that siRNA-mediated mRNA cleavage occurs specifically at the site predicted for an RNAi mechanism from a patient who received the highest dose of the nanoparticles. Together, these data demonstrate that siRNA administered systemically to a human can produce a specific gene inhibition (reduction in mRNA and protein) by an RNAi mechanism of action.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Novel engineering approaches are discussed that capitalize on the growing understanding of tumour biology and nano–bio interactions to develop more effective nanotherapeutics for cancer patients.
Abstract: The intrinsic limits of conventional cancer therapies prompted the development and application of various nanotechnologies for more effective and safer cancer treatment, herein referred to as cancer nanomedicine. Considerable technological success has been achieved in this field, but the main obstacles to nanomedicine becoming a new paradigm in cancer therapy stem from the complexities and heterogeneity of tumour biology, an incomplete understanding of nano-bio interactions and the challenges regarding chemistry, manufacturing and controls required for clinical translation and commercialization. This Review highlights the progress, challenges and opportunities in cancer nanomedicine and discusses novel engineering approaches that capitalize on our growing understanding of tumour biology and nano-bio interactions to develop more effective nanotherapeutics for cancer patients.

3,800 citations

Journal ArticleDOI
TL;DR: This Review focuses on recent progress important for the rational design of such nanoparticles and discusses the challenges to realizing the potential of nanoparticles.
Abstract: Engineered nanoparticles have the potential to revolutionize the diagnosis and treatment of many diseases; for example, by allowing the targeted delivery of a drug to particular subsets of cells. However, so far, such nanoparticles have not proved capable of surmounting all of the biological barriers required to achieve this goal. Nevertheless, advances in nanoparticle engineering, as well as advances in understanding the importance of nanoparticle characteristics such as size, shape and surface properties for biological interactions, are creating new opportunities for the development of nanoparticles for therapeutic applications. This Review focuses on recent progress important for the rational design of such nanoparticles and discusses the challenges to realizing the potential of nanoparticles.

3,239 citations

Journal ArticleDOI
TL;DR: Recent advances in the understanding of miRNAs in cancer and in other diseases are described and the challenge of identifying the most efficacious therapeutic candidates is discussed and a perspective on achieving safe and targeted delivery of miRNA therapeutics is provided.
Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that can modulate mRNA expression. Insights into the roles of miRNAs in development and disease have led to the development of new therapeutic approaches that are based on miRNA mimics or agents that inhibit their functions (antimiRs), and the first such approaches have entered the clinic. This Review discusses the role of different miRNAs in cancer and other diseases, and provides an overview of current miRNA therapeutics in the clinic. In just over two decades since the discovery of the first microRNA (miRNA), the field of miRNA biology has expanded considerably. Insights into the roles of miRNAs in development and disease, particularly in cancer, have made miRNAs attractive tools and targets for novel therapeutic approaches. Functional studies have confirmed that miRNA dysregulation is causal in many cases of cancer, with miRNAs acting as tumour suppressors or oncogenes (oncomiRs), and miRNA mimics and molecules targeted at miRNAs (antimiRs) have shown promise in preclinical development. Several miRNA-targeted therapeutics have reached clinical development, including a mimic of the tumour suppressor miRNA miR-34, which reached phase I clinical trials for treating cancer, and antimiRs targeted at miR-122, which reached phase II trials for treating hepatitis. In this article, we describe recent advances in our understanding of miRNAs in cancer and in other diseases and provide an overview of current miRNA therapeutics in the clinic. We also discuss the challenge of identifying the most efficacious therapeutic candidates and provide a perspective on achieving safe and targeted delivery of miRNA therapeutics.

3,210 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the barriers to the delivery of cancer therapeutics and summarize strategies that have been developed to overcome these barriers and discuss design considerations for optimizing the nanoparticles to tumors.
Abstract: Recent advances in nanotechnology have offered new hope for cancer detection, prevention, and treatment. While the enhanced permeability and retention effect has served as a key rationale for using nanoparticles to treat solid tumors, it does not enable uniform delivery of these particles to all regions of tumors in sufficient quantities. This heterogeneous distribution of therapeutics is a result of physiological barriers presented by the abnormal tumor vasculature and interstitial matrix. These barriers are likely to be responsible for the modest survival benefit offered by many FDA-approved nanotherapeutics and must be overcome for the promise of nanomedicine in patients to be realized. Here, we review these barriers to the delivery of cancer therapeutics and summarize strategies that have been developed to overcome these barriers. Finally, we discuss design considerations for optimizing the delivery of nanoparticles to tumors.

2,688 citations

Journal ArticleDOI
TL;DR: The biological barriers to gene delivery in vivo are introduced and recent advances in material sciences, nanotechnology and nucleic acid chemistry that have yielded promising non-viral delivery systems are discussed, some of which are currently undergoing testing in clinical trials.
Abstract: Gene-based therapy is the intentional modulation of gene expression in specific cells to treat pathological conditions This modulation is accomplished by introducing exogenous nucleic acids such as DNA, mRNA, small interfering RNA (siRNA), microRNA (miRNA) or antisense oligonucleotides Given the large size and the negative charge of these macromolecules, their delivery is typically mediated by carriers or vectors In this Review, we introduce the biological barriers to gene delivery in vivo and discuss recent advances in material sciences, nanotechnology and nucleic acid chemistry that have yielded promising non-viral delivery systems, some of which are currently undergoing testing in clinical trials The diversity of these systems highlights the recent progress of gene-based therapy using non-viral approaches

2,460 citations

References
More filters
Journal ArticleDOI
19 Feb 1998-Nature
TL;DR: To their surprise, it was found that double-stranded RNA was substantially more effective at producing interference than was either strand individually, arguing against stochiometric interference with endogenous mRNA and suggesting that there could be a catalytic or amplification component in the interference process.
Abstract: Experimental introduction of RNA into cells can be used in certain biological systems to interfere with the function of an endogenous gene Such effects have been proposed to result from a simple antisense mechanism that depends on hybridization between the injected RNA and endogenous messenger RNA transcripts RNA interference has been used in the nematode Caenorhabditis elegans to manipulate gene expression Here we investigate the requirements for structure and delivery of the interfering RNA To our surprise, we found that double-stranded RNA was substantially more effective at producing interference than was either strand individually After injection into adult animals, purified single strands had at most a modest effect, whereas double-stranded mixtures caused potent and specific interference The effects of this interference were evident in both the injected animals and their progeny Only a few molecules of injected double-stranded RNA were required per affected cell, arguing against stochiometric interference with endogenous mRNA and suggesting that there could be a catalytic or amplification component in the interference process

15,374 citations


"Evidence of RNAi in humans from sys..." refers background in this paper

  • ...1a) containing: (1) a linear, cyclodextrin-based polymer (CDP), (2) a human transferrin protein (TF) targeting ligand displayed on the exterior of the nanoparticle to engage TF receptors (TFR) on the surface of the cancer cells, (3) a hydrophilic polymer (polyethylene glycol (PEG) used to promote nanoparticle stability in biological fluids), and (4) siRNA designed to reduce the expression of the RRM2 (sequence used in the clinic was previously denoted siR2B15)(14)....

    [...]

Journal ArticleDOI
24 May 2001-Nature
TL;DR: 21-nucleotide siRNA duplexes provide a new tool for studying gene function in mammalian cells and may eventually be used as gene-specific therapeutics.
Abstract: RNA interference (RNAi) is the process of sequence-specific, post-transcriptional gene silencing in animals and plants, initiated by double-stranded RNA (dsRNA) that is homologous in sequence to the silenced gene. The mediators of sequence-specific messenger RNA degradation are 21- and 22-nucleotide small interfering RNAs (siRNAs) generated by ribonuclease III cleavage from longer dsRNAs. Here we show that 21-nucleotide siRNA duplexes specifically suppress expression of endogenous and heterologous genes in different mammalian cell lines, including human embryonic kidney (293) and HeLa cells. Therefore, 21-nucleotide siRNA duplexes provide a new tool for studying gene function in mammalian cells and may eventually be used as gene-specific therapeutics.

10,451 citations


"Evidence of RNAi in humans from sys..." refers background in this paper

  • ...1a) containing: (1) a linear, cyclodextrin-based polymer (CDP), (2) a human transferrin protein (TF) targeting ligand displayed on the exterior of the nanoparticle to engage TF receptors (TFR) on the surface of the cancer cells, (3) a hydrophilic polymer (polyethylene glycol (PEG) used to promote nanoparticle stability in biological fluids), and (4) siRNA designed to reduce the expression of the RRM2 (sequence used in the clinic was previously denoted siR2B15)(14)....

    [...]

Journal ArticleDOI
11 Nov 2004-Nature
TL;DR: In this article, chemically modified short interfering RNAs (siRNAs) were used to silence an endogenous gene encoding apolipoprotein B (apoB) after intravenous injection in mice.
Abstract: RNA interference (RNAi) holds considerable promise as a therapeutic approach to silence disease-causing genes, particularly those that encode so-called 'non-druggable' targets that are not amenable to conventional therapeutics such as small molecules, proteins, or monoclonal antibodies. The main obstacle to achieving in vivo gene silencing by RNAi technologies is delivery. Here we show that chemically modified short interfering RNAs (siRNAs) can silence an endogenous gene encoding apolipoprotein B (apoB) after intravenous injection in mice. Administration of chemically modified siRNAs resulted in silencing of the apoB messenger RNA in liver and jejunum, decreased plasma levels of apoB protein, and reduced total cholesterol. We also show that these siRNAs can silence human apoB in a transgenic mouse model. In our in vivo study, the mechanism of action for the siRNAs was proven to occur through RNAi-mediated mRNA degradation, and we determined that cleavage of the apoB mRNA occurred specifically at the predicted site. These findings demonstrate the therapeutic potential of siRNAs for the treatment of disease.

2,315 citations

Journal ArticleDOI
22 Jan 2009-Nature
TL;DR: The discovery that gene expression can be controlled by the Watson–Crick base-pairing of small RNAs with messenger RNAs containing complementary sequence — a process known as RNA interference — has markedly advanced the understanding of eukaryotic gene regulation and function.
Abstract: The discovery that gene expression can be controlled by the Watson–Crick base-pairing of small RNAs with messenger RNAs containing complementary sequence — a process known as RNA interference — has markedly advanced our understanding of eukaryotic gene regulation and function. The ability of short RNA sequences to modulate gene expression has provided a powerful tool with which to study gene function and is set to revolutionize the treatment of disease. Remarkably, despite being just one decade from its discovery, the phenomenon is already being used therapeutically in human clinical trials, and biotechnology companies that focus on RNA-interference-based therapeutics are already publicly traded.

1,196 citations


"Evidence of RNAi in humans from sys..." refers background in this paper

  • ...1a) containing: (1) a linear, cyclodextrin-based polymer (CDP), (2) a human transferrin protein (TF) targeting ligand displayed on the exterior of the nanoparticle to engage TF receptors (TFR) on the surface of the cancer cells, (3) a hydrophilic polymer (polyethylene glycol (PEG) used to promote nanoparticle stability in biological fluids), and (4) siRNA designed to reduce the expression of the RRM2 (sequence used in the clinic was previously denoted siR2B15)(14)....

    [...]

Journal ArticleDOI
TL;DR: In a more fulminant hepatitis induced by injecting agonistic Fas-specific antibody, 82% of mice treated with siRNA that effectively silenced Fas survived for 10 days of observation, whereas all control mice died within 3 days.
Abstract: 1. However, its potential to treat or prevent disease remains unproven. Fas-mediated apoptosis is implicated in a broad spectrum of liver diseases, where inhibiting hepatocyte death is life-saving 2 . We investigated the in vivo silencing effect of small interfering RNA (siRNA) duplexes targeting the gene Fas (also known as Tnfrsf6), encoding the Fas receptor, to protect mice from liver failure and fibrosis in two models of autoimmune hepatitis. Intravenous injection of Fas siRNA specifically reduced Fas mRNA levels and expression of Fas protein in mouse hepatocytes, and the effects persisted without diminution for 10 days. Hepatocytes isolated from mice treated with Fas siRNA were resistant to apoptosis when exposed to Fas-specific antibody or co-cultured with concanavalin A (ConA)-stimulated hepatic mononuclear cells. Treatment with Fas siRNA 2 days before ConA challenge abrogated hepatocyte necrosis and inflammatory infiltration and markedly reduced serum concentrations of transaminases. Administering Fas siRNA beginning one week after initiating weekly ConA injections protected mice from liver fibrosis. In a more fulminant hepatitis induced by injecting agonistic Fasspecific antibody, 82% of mice treated with siRNA that effectively silenced Fas survived for 10 days of observation, whereas all control mice died within 3 days. Silencing Fas expression with RNAi holds therapeutic promise to prevent liver injury by protecting hepatocytes from cytotoxicity.

1,176 citations

Related Papers (5)