scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Evidence of the Immune Relevance of Prevotella copri, a Gut Microbe, in Patients With Rheumatoid Arthritis.

01 May 2017-Arthritis & Rheumatism (NIH Public Access)-Vol. 69, Iss: 5, pp 964-975
TL;DR: Prevotella copri, an intestinal microbe, may overexpand in stool samples from patients with new‐onset rheumatoid arthritis (RA), but it is not yet clear whether the organism has immune relevance in RA pathogenesis.
Abstract: Objective Prevotella copri, an intestinal microbe, may overexpand in stool samples from patients with new-onset rheumatoid arthritis (RA), but it is not yet clear whether the organism has immune relevance in RA pathogenesis. Methods HLA–DR–presented peptides (T cell epitopes) from P copri were sought directly in the patients' synovial tissue or peripheral blood mononuclear cell (PBMC) samples using tandem mass spectrometry. The antigenicity of peptides or their source proteins was examined in samples from the RA patients or comparison groups. T cell reactivity was determined by enzyme-linked immunospot assay; antibody responses were measured by enzyme-linked immunosorbent assay, and cytokine/chemokine determinations were made by bead-based assays. Serum and synovial fluid samples were examined for 16S ribosomal DNA for P copri using nested polymerase chain reaction analysis. Results In PBMCs, we identified an HLA–DR–presented peptide from a 27-kd protein of P copri (Pc-p27), which stimulated Th1 responses in 42% of patients with new-onset RA. In both new-onset RA patients and chronic RA patients, 1 subgroup had IgA antibody responses to either Pc-p27 or the whole organism, which correlated with Th17 cytokine responses and frequent anti–citrullinated protein antibodies (ACPAs). The other subgroup had IgG P copri antibodies, which were associated with Prevotella DNA in synovial fluid, P copri–specific Th1 responses, and less frequent ACPAs. In contrast, P copri antibody responses were rarely found in patients with other rheumatic diseases or in healthy controls. Conclusion Subgroups of RA patients have differential IgG or IgA immune reactivity with P copri, which appears to be specific for this disease. These observations provide evidence that P copri is immune-relevant in RA pathogenesis.
Citations
More filters
Journal ArticleDOI
TL;DR: Findings indicate that some Prevotella strains may be clinically important pathobionts that can participate in human disease by promoting chronic inflammation.
Abstract: The microbiota plays a central role in human health and disease by shaping immune development, immune responses and metabolism, and by protecting from invading pathogens. Technical advances that allow comprehensive characterization of microbial communities by genetic sequencing have sparked the hunt for disease-modulating bacteria. Emerging studies in humans have linked the increased abundance of Prevotella species at mucosal sites to localized and systemic disease, including periodontitis, bacterial vaginosis, rheumatoid arthritis, metabolic disorders and low-grade systemic inflammation. Intriguingly, Prevotella abundance is reduced within the lung microbiota of patients with asthma and chronic obstructive pulmonary disease. Increased Prevotella abundance is associated with augmented T helper type 17 (Th17) -mediated mucosal inflammation, which is in line with the marked capacity of Prevotella in driving Th17 immune responses in vitro. Studies indicate that Prevotella predominantly activate Toll-like receptor 2, leading to production of Th17-polarizing cytokines by antigen-presenting cells, including interleukin-23 (IL-23) and IL-1. Furthermore, Prevotella stimulate epithelial cells to produce IL-8, IL-6 and CCL20, which can promote mucosal Th17 immune responses and neutrophil recruitment. Prevotella-mediated mucosal inflammation leads to systemic dissemination of inflammatory mediators, bacteria and bacterial products, which in turn may affect systemic disease outcomes. Studies in mice support a causal role of Prevotella as colonization experiments promote clinical and inflammatory features of human disease. When compared with strict commensal bacteria, Prevotella exhibit increased inflammatory properties, as demonstrated by augmented release of inflammatory mediators from immune cells and various stromal cells. These findings indicate that some Prevotella strains may be clinically important pathobionts that can participate in human disease by promoting chronic inflammation.

664 citations

Journal ArticleDOI
TL;DR: Evaluation of the microbiome composition and prevalence of Prevotella spp.
Abstract: Objectives Rheumatoid arthritis (RA) has been associated with a relative expansion of faecal Prevotellaceae. To determine the microbiome composition and prevalence of Prevotella spp. in a group of individuals at increased risk for RA, but prior to the development of the disease. Methods In an ongoing cohort study of first-degree relatives (FDRs) of patients with RA, we identified ‘FDR controls’, asymptomatic and without autoantibodies, and individuals in pre-clinical RA stages, who had either developed anticitrullinated peptide antibodies or rheumatoid factor positivity and/or symptoms and signs associated with possible RA. Stool sampling and culture-independent microbiota analyses were performed followed by descriptive statistics and statistical analyses of community structures. Results A total of 133 participants were included, of which 50 were categorised as ‘FDR controls’ and 83 in ‘pre-clinical RA stages’. The microbiota of individuals in ‘pre-clinical RA stages’ was significantly altered compared with FDR controls. We found a significant enrichment of the bacterial family Prevotellaceae, particularly Prevotella spp., in the ‘pre-clinical RA’ group (p=0.04). Conclusions Prevotella spp. enrichment in individuals in pre-clinical stages of RA, before the onset of RA, suggests a role of intestinal dysbiosis in the development of RA.

225 citations

Journal ArticleDOI
TL;DR: The mechanisms through which the microbiota contributes to the predisposition, initiation and perpetuation of immune-mediated diseases, and the therapeutic avenues that either target the microbiota, the barrier surfaces or the host immune system to restore tolerance and homeostasis are discussed.
Abstract: Host-microbiota interactions are fundamental for the development of the immune system. Drastic changes in modern environments and lifestyles have led to an imbalance of this evolutionarily ancient process, coinciding with a steep rise in immune-mediated diseases such as autoimmune, allergic and chronic inflammatory disorders. There is an urgent need to better understand these diseases in the context of mucosal and skin microbiota. This Review discusses the mechanisms of how the microbiota contributes to the predisposition, initiation and perpetuation of immune-mediated diseases in the context of a genetically prone host. It is timely owing to the wealth of new studies that recently contributed to this field, ranging from metagenomic studies in humans and mechanistic studies of host-microorganism interactions in gnotobiotic models and in vitro systems, to molecular mechanisms with broader implications across immune-mediated diseases. We focus on the general principles, such as breaches in immune tolerance and barriers, leading to the promotion of immune-mediated diseases by gut, oral and skin microbiota. Lastly, the therapeutic avenues that either target the microbiota, the barrier surfaces or the host immune system to restore tolerance and homeostasis will be explored.

203 citations

Journal ArticleDOI
TL;DR: Evidence linking intestinal dysbiosis with the autoimmune mechanisms involved in the development of rheumatoid arthritis is presented.
Abstract: Characterization and understanding of gut microbiota has recently increased representing a wide research field, especially in autoimmune diseases. Gut microbiota is the major source of microbes which might exert beneficial as well as pathogenic effects on human health. Intestinal microbiome's role as mediator of inflammation has only recently emerged. Microbiota has been observed to differ in subjects with early rheumatoid arthritis compared to controls, and this finding has commanded this study as a possible autoimmune process. Studies with intestinal microbiota have shown that rheumatoid arthritis is characterized by an expansion and/or decrease of bacterial groups as compared to controls. In this review, we present evidence linking intestinal dysbiosis with the autoimmune mechanisms involved in the development of rheumatoid arthritis.

199 citations


Cites background from "Evidence of the Immune Relevance of..."

  • ...[72] identified that subgroups of rheumatoid arthritis patients have differential IgG or IgA immune reactivity with P....

    [...]

  • ...In new onset RA patients, Prevotella abundance in the gut was at the expense of Bacteroides fragilis, an organism that is important for Treg function [18, 72]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: SignalP 4.0 was the best signal-peptide predictor for all three organism types but was not in all cases as good as SignalP 3.0 according to cleavage-site sensitivity or signal- peptide correlation when there are no transmembrane proteins present.
Abstract: We benchmarked SignalP 4.0 against SignalP 3.0 and ten other signal peptide prediction algorithms (Fig. 1). We compared prediction performance using the Matthews correlation coefficient16, for which each sequence was counted as a true or false positive or negative. To test SignalP 4.0 performance, we did not use data that had been used in training the networks or selecting the optimal architecture, and the test data did not contain homologs to the training and optimization data (Supplementary Methods). The test set for SignalP 3.0 was also independent of the training set because we removed sequences used to construct SignalP 3.0 and their homologs from the benchmark data. For other algorithms more recent than SignalP 3.0, the benchmark data may include data used to train the methods, possibly leading to slight overestimations of their performance. Our results show that SignalP 4.0 was the best signal-peptide predictor for all three organism types (Fig. 1). This comes at a price, however, because SignalP 4.0 was not in all cases as good as SignalP 3.0 according to cleavage-site sensitivity or signal-peptide correlation when there are no transmembrane proteins present (Supplementary Results). An ideal method would have the best SignalP 4.0: discriminating signal peptides from transmembrane regions

8,370 citations


Additional excerpts

  • ...0 software (22), this HLA–DR–presented P copri...

    [...]

Journal ArticleDOI
TL;DR: This new classification system redefines the current paradigm of RA by focusing on features at earlier stages of disease that are associated with persistent and/or erosive disease, rather than defining the disease by its late-stage features.
Abstract: Objective The 1987 American College of Rheumatology (ACR; formerly the American Rheumatism Association) classifi cation criteria for rheumatoid arthritis (RA) have been criticised for their lack of sensitivity in early disease. This work was undertaken to develop new classifi cation criteria for RA. Methods A joint working group from the ACR and the European League Against Rheumatism developed, in three phases, a new approach to classifying RA. The work focused on identifying, among patients newly presenting with undifferentiated infl ammatory synovitis, factors that best discriminated between those who were and those who were not at high risk for persistent and/ or erosive disease—this being the appropriate current paradigm underlying the disease construct ‘RA’. Results In the new criteria set, classifi cation as ‘defi nite RA’ is based on the confi rmed presence of synovitis in at least one joint, absence of an alternative diagnosis better explaining the synovitis, and achievement of a total score of 6 or greater (of a possible 10) from the individual scores in four domains: number and site of involved joints (range 0–5), serological abnormality (range 0–3), elevated acute-phase response (range 0–1) and symptom duration (two levels; range 0–1). Conclusion This new classifi cation system redefi nes the current paradigm of RA by focusing on features at earlier stages of disease that are associated with persistent and/or erosive disease, rather than defi ning the disease by its late-stage features. This will refocus attention on the important need for earlier diagnosis and institution of effective disease-suppressing therapy to prevent or minimise the occurrence of the undesirable sequelae that currently comprise the paradigm underlying the disease construct ‘RA’.

7,120 citations

Journal ArticleDOI
TL;DR: The increased understanding of the immune mechanisms of rheumatoid arthritis has led to the development of a considerable number of new therapeutic agents that alter the natural history of the disease and reduce mortality.
Abstract: The increased understanding of the immune mechanisms of rheumatoid arthritis has led to the development of a considerable number of new therapeutic agents that alter the natural history of the disease and reduce mortality.

3,975 citations

Journal ArticleDOI
15 May 2003-Nature
TL;DR: Based on the pathogenic mechanisms, specific therapeutic interventions can be designed to suppress synovial inflammation and joint destruction in rheumatoid arthritis.
Abstract: Rheumatoid arthritis is the most common inflammatory arthritis and is a major cause of disability. It existed in early Native American populations several thousand years ago but might not have appeared in Europe until the 17th century. Early theories on the pathogenesis of rheumatoid arthritis focused on autoantibodies and immune complexes. T-cell-mediated antigen-specific responses, T-cell-independent cytokine networks, and aggressive tumour-like behaviour of rheumatoid synovium have also been implicated. More recently, the contribution of autoantibodies has returned to the forefront. Based on the pathogenic mechanisms, specific therapeutic interventions can be designed to suppress synovial inflammation and joint destruction in rheumatoid arthritis.

3,321 citations

Journal ArticleDOI
21 Jan 2011-Science
TL;DR: Oral inoculation of Clostridium during the early life of conventionally reared mice resulted in resistance to colitis and systemic immunoglobulin E responses in adult mice, suggesting a new therapeutic approach to autoimmunity and allergy.
Abstract: CD4+ T regulatory cells (Tregs), which express the Foxp3 transcription factor, play a critical role in the maintenance of immune homeostasis. Here, we show that in mice, Tregs were most abundant in the colonic mucosa. The spore-forming component of indigenous intestinal microbiota, particularly clusters IV and XIVa of the genus Clostridium, promoted Treg cell accumulation. Colonization of mice by a defined mix of Clostridium strains provided an environment rich in transforming growth factor–β and affected Foxp3+ Treg number and function in the colon. Oral inoculation of Clostridium during the early life of conventionally reared mice resulted in resistance to colitis and systemic immunoglobulin E responses in adult mice, suggesting a new therapeutic approach to autoimmunity and allergy.

3,096 citations


Additional excerpts

  • ...that is important for Treg function (9,10)....

    [...]

Related Papers (5)