scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Evidence that contaminated surfaces contribute to the transmission of hospital pathogens and an overview of strategies to address contaminated surfaces in hospital settings

TL;DR: In this paper, the authors present evidence that contaminated surfaces contribute to transmission of hospital pathogens and discuss the various strategies currently available to address environmental contamination in hospitals, including vaccination and intervention.
About: This article is published in American Journal of Infection Control.The article was published on 2013-05-01. It has received 396 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: Emerging data suggest that MERS-CoV also shares these properties, including the need for hand hygiene and personal protective equipment to minimize self-contamination and to protect against inoculation of mucosal surfaces and the respiratory tract, and enhanced surface cleaning and disinfection in healthcare settings.

632 citations

Journal ArticleDOI
TL;DR: Several studies suggest that simple infection-control procedures such as cleaning hands with an alcohol-based hand rub can help prevent HCAIs and save lives, reduce morbidity, and minimize health care costs.
Abstract: Health care-associated infections (HCAIs) are infections that occur while receiving health care, developed in a hospital or other health care facility that first appear 48 hours or more after hospital admission, or within 30 days after having received health care. Multiple studies indicate that the common types of adverse events affecting hospitalized patients are adverse drug events, HCAIs, and surgical complications. The US Center for Disease Control and Prevention identifies that nearly 1.7 million hospitalized patients annually acquire HCAIs while being treated for other health issues and that more than 98,000 patients (one in 17) die due to these. Several studies suggest that simple infection-control procedures such as cleaning hands with an alcohol-based hand rub can help prevent HCAIs and save lives, reduce morbidity, and minimize health care costs. Routine educational interventions for health care professionals can help change their hand-washing practices to prevent the spread of infection. In support of this, the WHO has produced guidelines to promote hand-washing practices among member countries.

601 citations

Journal ArticleDOI
Zi yu Ge1, Lu ming Yang1, Jia jia Xia1, Xiao hui Fu1, Yan-zhen Zhang1 
TL;DR: In addition to the standard precautions, some special precautions that should be implemented during an outbreak have been raised in this review.
Abstract: Since its emergence in December 2019, corona virus disease 2019 (COVID-19) has impacted several countries, affecting more than 90 thousand patients and making it a global public threat. The routes of transmission are direct contact, and droplet and possible aerosol transmissions. Due to the unique nature of dentistry, most dental procedures generate significant amounts of droplets and aerosols, posing potential risks of infection transmission. Understanding the significance of aerosol transmission and its implications in dentistry can facilitate the identification and correction of negligence in daily dental practice. In addition to the standard precautions, some special precautions that should be implemented during an outbreak have been raised in this review.

426 citations

Journal ArticleDOI
31 Dec 2015-Mbio
TL;DR: Human coronavirus 229E remained infectious in a human lung cell culture model following at least 5 days of persistence on a range of common nonbiocidal surface materials, including polytetrafluoroethylene, polyvinyl chloride, ceramic tiles, glass, silicone rubber, and stainless steel.
Abstract: The evolution of new and reemerging historic virulent strains of respiratory viruses from animal reservoirs is a significant threat to human health. Inefficient human-to-human transmission of zoonotic strains may initially limit the spread of transmission, but an infection may be contracted by touching contaminated surfaces. Enveloped viruses are often susceptible to environmental stresses, but the human coronaviruses responsible for severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) have recently caused increasing concern of contact transmission during outbreaks. We report here that pathogenic human coronavirus 229E remained infectious in a human lung cell culture model following at least 5 days of persistence on a range of common nonbiocidal surface materials, including polytetrafluoroethylene (Teflon; PTFE), polyvinyl chloride (PVC), ceramic tiles, glass, silicone rubber, and stainless steel. We have shown previously that noroviruses are destroyed on copper alloy surfaces. In this new study, human coronavirus 229E was rapidly inactivated on a range of copper alloys (within a few minutes for simulated fingertip contamination) and Cu/Zn brasses were very effective at lower copper concentration. Exposure to copper destroyed the viral genomes and irreversibly affected virus morphology, including disintegration of envelope and dispersal of surface spikes. Cu(I) and Cu(II) moieties were responsible for the inactivation, which was enhanced by reactive oxygen species generation on alloy surfaces, resulting in even faster inactivation than was seen with nonenveloped viruses on copper. Consequently, copper alloy surfaces could be employed in communal areas and at any mass gatherings to help reduce transmission of respiratory viruses from contaminated surfaces and protect the public health. IMPORTANCE Respiratory viruses are responsible for more deaths globally than any other infectious agent. Animal coronaviruses that “host jump” to humans result in severe infections with high mortality, such as severe acute respiratory syndrome (SARS) and, more recently, Middle East respiratory syndrome (MERS). We show here that a closely related human coronavirus, 229E, which causes upper respiratory tract infection in healthy individuals and serious disease in patients with comorbidities, remained infectious on surface materials common to public and domestic areas for several days. The low infectious dose means that this is a significant infection risk to anyone touching a contaminated surface. However, rapid inactivation, irreversible destruction of viral RNA, and massive structural damage were observed in coronavirus exposed to copper and copper alloy surfaces. Incorporation of copper alloy surfaces in conjunction with effective cleaning regimens and good clinical practice could help to control transmission of respiratory coronaviruses, including MERS and SARS.

395 citations

Journal ArticleDOI
TL;DR: The evidence demonstrating the importance of contamination of hospital surfaces in the transmission of healthcare-associated pathogens and interventions scientifically demonstrated to reduce the levels of microbial contamination and decrease healthcare- associated infections are reviewed.
Abstract: Purpose of reviewThis article reviews the evidence demonstrating the importance of contamination of hospital surfaces in the transmission of healthcare-associated pathogens and interventions scientifically demonstrated to reduce the levels of microbial contamination and decrease healthcare-associate

388 citations

References
More filters
Journal ArticleDOI
TL;DR: The most common nosocomial pathogens may well survive or persist on surfaces for months and can thereby be a continuous source of transmission if no regular preventive surface disinfection is performed.
Abstract: Inanimate surfaces have often been described as the source for outbreaks of nosocomial infections. The aim of this review is to summarize data on the persistence of different nosocomial pathogens on inanimate surfaces. The literature was systematically reviewed in MedLine without language restrictions. In addition, cited articles in a report were assessed and standard textbooks on the topic were reviewed. All reports with experimental evidence on the duration of persistence of a nosocomial pathogen on any type of surface were included. Most gram-positive bacteria, such as Enterococcus spp. (including VRE), Staphylococcus aureus (including MRSA), or Streptococcus pyogenes, survive for months on dry surfaces. Many gram-negative species, such as Acinetobacter spp., Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, Serratia marcescens, or Shigella spp., can also survive for months. A few others, such as Bordetella pertussis, Haemophilus influenzae, Proteus vulgaris, or Vibrio cholerae, however, persist only for days. Mycobacteria, including Mycobacterium tuberculosis, and spore-forming bacteria, including Clostridium difficile, can also survive for months on surfaces. Candida albicans as the most important nosocomial fungal pathogen can survive up to 4 months on surfaces. Persistence of other yeasts, such as Torulopsis glabrata, was described to be similar (5 months) or shorter (Candida parapsilosis, 14 days). Most viruses from the respiratory tract, such as corona, coxsackie, influenza, SARS or rhino virus, can persist on surfaces for a few days. Viruses from the gastrointestinal tract, such as astrovirus, HAV, polio- or rota virus, persist for approximately 2 months. Blood-borne viruses, such as HBV or HIV, can persist for more than one week. Herpes viruses, such as CMV or HSV type 1 and 2, have been shown to persist from only a few hours up to 7 days. The most common nosocomial pathogens may well survive or persist on surfaces for months and can thereby be a continuous source of transmission if no regular preventive surface disinfection is performed.

2,110 citations

Journal ArticleDOI
TL;DR: What clinicians should know about hospital-acquired infections is updated to reflect the latest research on Gram-negative bacteria and antibiotic drug resistance.
Abstract: Hospital-acquired infections are most commonly associated with mechanical ventilation, invasive medical devices, or surgical procedures. Gram-negative bacteria are responsible for more than 30% of hospital-acquired infections and predominate in hospital-acquired pneumonia. They are highly efficient at up-regulating or acquiring mechanisms of antibiotic drug resistance, especially in the presence of antibiotic selection pressure. This review updates what clinicians should know about these often life-threatening infections.

1,114 citations

Journal ArticleDOI
TL;DR: It is concluded that inanimate surfaces near affected patients commonly become contaminated with MRSA and that the frequency of contamination is affected by the body site at which patients are colonized or infected.
Abstract: Objective:To study the possible role of contaminated environmental surfaces as a reservoir of methicillin-resistant Staphylococcus aureus (MRSA) in hospitals.Design:A prospective culture survey of inanimate objects in the rooms of patients with MRSA.Setting:A 200-bed university-affiliated teaching hospital.Patients:Thirty-eight consecutive patients colonized or infected with MRSA. Patients represented endemic MRSA cases.Results:Ninety-six (27%) of 350 surfaces sampled in the rooms of affected patients were contaminated with MRSA. When patients had MRSA in a wound or urine, 36% of surfaces were contaminated. In contrast, when MRSA was isolated from other body sites, only 6% of surfaces were contaminated (odds ratio, 8.8; 95% confidence interval, 3.725.5; Pく.0001). Environmental contamination occurred in the rooms of 73% of infected patients and 69% of colonized patients. Frequently contaminated objects included the floor, bed linens, the patient's gown, overbed tables, and blood pressure cuffs. Sixty-five percent of nurses who had performed morning patient-care activities on patients with MRSA in a wound or urine contaminated their nursing uniforms or gowns with MRSA. Forty-two percent of personnel who had no direct contact with such patients, but had touched contaminated surfaces, contaminated their gloves with MRSA.Conclusions:We concluded that inanimate surfaces near affected patients commonly become contaminated with MRSA and that the frequency of contamination is affected by the body site at which patients are colonized or infected. That personnel may contaminate their gloves (or possibly their hands) by touching such surfaces suggests that contaminated environmental surfaces may serve as a reservoir of MRSA in hospitals.

768 citations

Journal ArticleDOI
TL;DR: Evidence is accumulating that contaminated surfaces make an important contribution to the epidemic and endemic transmission of Clostridium difficile, vancomycin-resistant enterococci, methicillin-resistant Staphylococcus aureus, Acinetobacter baumannii, Pseudomonas aeruginosa, and norovirus and that improved environmental decontamination contributes to the control of outbreaks.
Abstract: Studies in the 1970s and 1980s suggested that environmental surface contamination played a negligible role in the endemic transmission of healthcare-associated infections. However, recent studies have demonstrated that several major nosocomial pathogens are shed by patients and contaminate hospital surfaces at concentrations sufficient for transmission, survive for extended periods, persist despite attempts to disinfect or remove them, and can be transferred to the hands of healthcare workers. Evidence is accumulating that contaminated surfaces make an important contribution to the epidemic and endemic transmission of Clostridium difficile, vancomycin-resistant enterococci, methicillin-resistant Staphylococcus aureus, Acinetobacter baumannii, Pseudomonas aeruginosa, and norovirus and that improved environmental decontamination contributes to the control of outbreaks. Efforts to improve environmental hygiene should include enhancing the efficacy of cleaning and disinfection and reducing the shedding of pathogens. Further high-quality studies are needed to clarify the role played by surfaces in nosocomial transmission and to determine the effectiveness of different interventions in reducing associated infection rates.

569 citations

Journal ArticleDOI
TL;DR: Admission to a room previously occupied by an MRSA-positive patient or a VRE- positive patient significantly increased the odds of acquisition for MRSA and VRE, and this route of transmission was a minor contributor to overall transmission.
Abstract: Background Environmental contamination with methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) occurs during the care of patients harboring these organisms and may increase the risk of transmission to subsequent room occupants. Methods Twenty-month retrospective cohort study of patients admitted to 8 intensive care units performing routine admission and weekly screening for MRSA and VRE. We assessed the relative odds of acquisition among patients admitted to rooms in which the most recent occupants were MRSA positive or VRE positive, compared with patients admitted to other rooms. Results Of 11 528 intensive care unit room stays, 10 151 occupants were eligible to acquire MRSA, and 10 349 were eligible to acquire VRE. Among patients whose prior room occupant was MRSA positive, 3.9% acquired MRSA, compared with 2.9% of patients whose prior room occupant was MRSA negative (adjusted odds ratio, 1.4; P = .04). VRE, Among patients whose prior room occupant was VRE positive, these values were 4.5% and 2.8% respectively (adjusted odds ratio, 1.4; P = .02). These excess risks accounted for 5.1% of all incident MRSA cases and 6.8% of all incident VRE cases, with a population attributable risk among exposed patients of less than 2% for either organism. Acquisition was significantly associated with longer post–intensive care unit length of stay. Conclusions Admission to a room previously occupied by an MRSA-positive patient or a VRE-positive patient significantly increased the odds of acquisition for MRSA and VRE. However, this route of transmission was a minor contributor to overall transmission. The effect of current cleaning practices in reducing the risk to the observed levels and the potential for further reduction are unknown.

507 citations