scispace - formally typeset
Search or ask a question

Evolution and the genetics of populations. Vol. 1. Genetic and biométrie foundations.

01 Jan 1968-
About: The article was published on 1968-01-01 and is currently open access. It has received 445 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: A review of predictive habitat distribution modeling is presented, which shows that a wide array of models has been developed to cover aspects as diverse as biogeography, conservation biology, climate change research, and habitat or species management.
Abstract: With the rise of new powerful statistical techniques and GIS tools, the development of predictive habitat distribution models has rapidly increased in ecology. Such models are static and probabilistic in nature, since they statistically relate the geographical distribution of species or communities to their present environment. A wide array of models has been developed to cover aspects as diverse as biogeography, conservation biology, climate change research, and habitat or species management. In this paper, we present a review of predictive habitat distribution modeling. The variety of statistical techniques used is growing. Ordinary multiple regression and its generalized form (GLM) are very popular and are often used for modeling species distributions. Other methods include neural networks, ordination and classification methods, Bayesian models, locally weighted approaches (e.g. GAM), environmental envelopes or even combinations of these models. The selection of an appropriate method should not depend solely on statistical considerations. Some models are better suited to reflect theoretical findings on the shape and nature of the species’ response (or realized niche). Conceptual considerations include e.g. the trade-off between optimizing accuracy versus optimizing generality. In the field of static distribution modeling, the latter is mostly related to selecting appropriate predictor variables and to designing an appropriate procedure for model selection. New methods, including threshold-independent measures (e.g. receiver operating characteristic (ROC)-plots) and resampling techniques (e.g. bootstrap, cross-validation) have been introduced in ecology for testing the accuracy of predictive models. The choice of an evaluation measure should be driven primarily by the goals of the study. This may possibly lead to the attribution of different weights to the various types of prediction errors (e.g. omission, commission or confusion). Testing the model in a wider range of situations (in space and time) will permit one to define the range of applications for which the model predictions are suitable. In turn, the qualification of the model depends primarily on the goals of the study that define the qualification criteria and on the usability of the model, rather than on statistics alone. © 2000 Elsevier Science B.V. All rights reserved.

6,748 citations

Book
31 Jul 1992
TL;DR: The LISREL Script for Rater Bias Model and Data for Simplex Model as mentioned in this paper is one of the most well-known models in the literature for gene expression analysis.
Abstract: Preface. List of Figures. List of Tables. 1. The Scope of Genetic Analyses. 2. Data Summary. 3. Biometrical Genetics. 4. Matrix Algebra. 5. Path Analysis and Structural Equations. 6. LISREL Models and Methods. 7. Model Fitting Functions and Optimization. 8. Univariate Analysis. 9. Power and Sample Size. 10. Social Interaction. 11. Sex Limitation and GE Interaction. 12. Multivariate Analysis. 13. Direction of Causation. 14. Repeated Measures. 15. Longitudinal Mean Trends. 16. Observer Ratings. 17. Assortment and Cultural Transmission. 18. Future Directions. Appendices: A. List of Participants. B. The Greek Alphabet. C. LISREL Scripts for Univariate Models. D. LISREL Script for Power Calculation. E. LISREL Scripts for Multivariate Models. F. LISREL Script for Sibling Interaction Model. G. LISREL Scripts for Sex and GE Interaction. H. LISREL Script for Rater Bias Model. I. LISREL Scripts for Direction of Causation. J. LISREL Script and Data for Simplex Model. K. LISREL Scripts for Assortment Models. Bibliography. Index.

3,317 citations

Journal ArticleDOI
30 Sep 1994-Science
TL;DR: This article synthesizes the current state of the genetic dissection of complex traits--describing the methods, limitations, and recent applications to biological problems.
Abstract: Medical genetics was revolutionized during the 1980s by the application of genetic mapping to locate the genes responsible for simple Mendelian diseases. Most diseases and traits, however, do not follow simple inheritance patterns. Genetics have thus begun taking up the even greater challenge of the genetic dissection of complex traits. Four major approaches have been developed: linkage analysis, allele-sharing methods, association studies, and polygenic analysis of experimental crosses. This article synthesizes the current state of the genetic dissection of complex traits--describing the methods, limitations, and recent applications to biological problems.

3,216 citations

Journal ArticleDOI
17 Mar 2000-Science
TL;DR: The biotech industry is establishing itself as the discovery arm of the pharmaceutical industry, and in bridging the gap between academia and large pharmaceutical companies, the biotech firms have been effective instruments of technology transfer.
Abstract: Driven by chemistry but increasingly guided by pharmacology and the clinical sciences, drug research has contributed more to the progress of medicine during the past century than any other scientific factor. The advent of molecular biology and, in particular, of genomic sciences is having a deep impact on drug discovery. Recombinant proteins and monoclonal antibodies have greatly enriched our therapeutic armamentarium. Genome sciences, combined with bioinformatic tools, allow us to dissect the genetic basis of multifactorial diseases and to determine the most suitable points of attack for future medicines, thereby increasing the number of treatment options. The dramatic increase in the complexity of drug research is enforcing changes in the institutional basis of this interdisciplinary endeavor. The biotech industry is establishing itself as the discovery arm of the pharmaceutical industry. In bridging the gap between academia and large pharmaceutical companies, the biotech firms have been effective instruments of technology transfer.

2,551 citations

29 Jan 2015
TL;DR: The current state of the genetic dissection of complex traits is summarized in this paper, which describes the methods, limitations, and recent applications to biological problems, including linkage analysis, allele-sharing methods, association studies, and polygenic analysis of experimental crosses.
Abstract: Medical genetics was revolutionized during the 1980s by the application of genetic mapping to locate the genes responsible for simple Mendelian diseases. Most diseases and traits, however, do not follow simple inheritance patterns. Geneticists have thus begun taking up the even greater challenge of the genetic dissection of complex traits. Four major approaches have been developed: linkage analysis, allele-sharing methods, association studies, and polygenic analysis of experimental crosses. This article synthesizes the current state of the genetic dissection of complex traits—describing the methods, limitations, and recent applications to biological problems.

1,805 citations