scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Evolution of Galaxy Star Formation and Metallicity: Impact on Double Compact Objects Mergers.

TL;DR: In this paper, the authors studied the impact of different galaxy statistics and empirical metallicity scaling relations on the merging rates and on the properties of compact objects binaries and found that the bulk of the star formation occurs at relatively high metallicities even at high redshift.
Abstract: We study the impact of different galaxy statistics and empirical metallicity scaling relations on the merging rates and on the properties of compact objects binaries. First, we analyze the similarities and differences of using the star formation rate functions or the stellar mass functions as galaxy statistics for the computation of the cosmic star formation rate density. Then we investigate the effects of adopting the Fundamental Metallicity Relation or a classic Mass Metallicity Relation to assign metallicity to galaxies with given properties. We find that when the Fundamental Metallicity Relation is exploited, the bulk of the star formation occurs at relatively high metallicities even at high redshift; the opposite holds when the Mass Metallicity Relation is employed, since in this case the metallicity at which most of the star formation takes place strongly decreases with redshift. We discuss the various reasons and possible biases originating this discrepancy. Finally, we show the impact that these different astrophysical prescriptions have on the merging rates and on the properties of compact objects binaries; specifically, we present results for the redshift dependent merging rates and for the chirp mass and time delay distributions of the merging binaries.
Citations
More filters
01 Jan 2013
TL;DR: In this paper, a review of the variety and reliability of galaxy mass estimators pertain to stars, gas, and dark matter is presented. But the review is limited to galaxies from stellar populations, dynamical masses of gas-rich and gas-poor galaxies, with some attention paid to our Milky Way.
Abstract: Galaxy masses play a fundamental role in our understanding of structure formation models. This review addresses the variety and reliability of mass estimators that pertain to stars, gas, and dark matter. The dierent sections on masses from stellar populations, dynamical masses of gas-rich and gas-poor galaxies, with some attention paid to our Milky Way, and masses from weak and strong lensing methods, all provide review material on galaxy masses in a self-consistent manner. Keywords: galaxies: dark matter | galaxies: evolution | galaxies: formation

155 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present binary population synthesis of isolated BHNS systems in order to predict their merger rate and characteristics for ground-based GW observatories, and explore key uncertainties in their assumptions about massive binary star evolution (e.g., mass transfer, common-envelope evolution, supernovae).
Abstract: Mergers of black hole-neutron star (BHNS) binaries are expected to be observed by gravitational wave (GW) detectors in the coming years. Such observations will not only provide confirmation that these systems exist, but will also give unique insights into the death and lives of massive (binary) stars and their possible association with gamma-ray bursts, r-process enrichment, and kilonovae. Here we present binary population synthesis of isolated BHNS systems in order to predict their merger rate and characteristics for ground-based GW observatories. We present the results for 420 different model permutations that explore key uncertainties in our assumptions about massive binary star evolution (e.g., mass transfer, common-envelope evolution, supernovae), and in our assumptions for the metallicity-specific star formation rate density, and characterize their relative impacts on our predictions. We predict intrinsic local BHNS merger rates in the range $\mathcal{R}_{\rm{m}}^0 \approx 4$-$830\,\rm{Gpc}^{-3}\,\rm{yr}^{-1}$ and detected rates in the range $\mathcal{R}_{\rm{det}} \approx 1$-$180\, \rm{yr}^{-1}$ for a GW network consisting of LIGO, Virgo and KAGRA at design sensitivity. We find that the binary evolution and metallicity-specific star formation rate density each impact the predicted merger rates by order $\mathcal{O}(10)$. We also present predictions for the GW detected BHNS merger properties and find that all 420 model variations predict that $\lesssim 5\%$ of the BHNS mergers have BH masses $\gtrsim 18\,M_{\odot}$, total masses $\gtrsim 20\,M_{\odot}$, chirp masses $\gtrsim 5.5\,M_{\odot}$, mass ratios $\gtrsim 12$ or $\lesssim 2$. Moreover, we find that massive NSs $ > 2\,M_{\odot}$ are expected to be commonly detected in BHNS mergers in almost all our model variations. Finally, a wide range of $\sim$ 0%-70% of the BHNS mergers are predicted to eject mass during the merger.

71 citations

Journal Article
TL;DR: The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers.
Abstract: The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary black hole merger signals with total masses up to 100M⊙ and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5σ over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance, which has a 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations we infer stellar-mass binary black hole merger rates lying in the range 9−240Gpc−3yr−1. These observations are beginning to inform astrophysical predictions of binary black hole formation rates, and indicate that future observing runs of the Advanced detector network will yield many more gravitational wave detections.

62 citations

Journal ArticleDOI
01 Feb 2022-Galaxies
TL;DR: In this article , the authors provide an overview of GW signals and characterise them based on features of interest such as generation processes and observational properties, and offer a ready-to-use manual for stochastic GW searches.
Abstract: The collection of individually resolvable gravitational wave (GW) events makes up a tiny fraction of all GW signals that reach our detectors, while most lie below the confusion limit and are undetected. Similarly to voices in a crowded room, the collection of unresolved signals gives rise to a background that is well-described via stochastic variables and, hence, referred to as the stochastic GW background (SGWB). In this review, we provide an overview of stochastic GW signals and characterise them based on features of interest such as generation processes and observational properties. We then review the current detection strategies for stochastic backgrounds, offering a ready-to-use manual for stochastic GW searches in real data. In the process, we distinguish between interferometric measurements of GWs, either by ground-based or space-based laser interferometers, and timing-residuals analyses with pulsar timing arrays (PTAs). These detection methods have been applied to real data both by large GW collaborations and smaller research groups, and the most recent and instructive results are reported here. We close this review with an outlook on future observations with third generation detectors, space-based interferometers, and potential noninterferometric detection methods proposed in the literature.

46 citations

Journal Article
TL;DR: In this article, the co-evolution of the black hole accretion rate (BHAR) and the star formation rate (SFR) in 1.5 days was investigated.
Abstract: We investigate the co-evolution of the black hole accretion rate (BHAR) and the star formation rate (SFR) in 1.5

26 citations

References
More filters
Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +1008 moreInstitutions (96)
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of $1.0 \times 10^{-21}$. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {\sigma}. The source lies at a luminosity distance of $410^{+160}_{-180}$ Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4} M_\odot$ and $29^{+4}_{-4} M_\odot$, and the final black hole mass is $62^{+4}_{-4} M_\odot$, with $3.0^{+0.5}_{-0.5} M_\odot c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals.These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

9,596 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1131 moreInstitutions (123)
TL;DR: The association of GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts.
Abstract: On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4} years. We infer the component masses of the binary to be between 0.86 and 2.26 M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28 deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8} Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

7,327 citations

Journal ArticleDOI
TL;DR: In this paper, the Schmidt law was used to model the global star formation law over the full range of gas densities and star formation rates observed in galaxies, and the results showed that the SFR scales with the ratio of the gas density to the average orbital timescale.
Abstract: Measurements of Hα, H I, and CO distributions in 61 normal spiral galaxies are combined with published far-infrared and CO observations of 36 infrared-selected starburst galaxies, in order to study the form of the global star formation law over the full range of gas densities and star formation rates (SFRs) observed in galaxies. The disk-averaged SFRs and gas densities for the combined sample are well represented by a Schmidt law with index N = 1.4 ± 0.15. The Schmidt law provides a surprisingly tight parametrization of the global star formation law, extending over several orders of magnitude in SFR and gas density. An alternative formulation of the star formation law, in which the SFR is presumed to scale with the ratio of the gas density to the average orbital timescale, also fits the data very well. Both descriptions provide potentially useful "recipes" for modeling the SFR in numerical simulations of galaxy formation and evolution.

5,299 citations


"Evolution of Galaxy Star Formation ..." refers background in this paper

  • ...The SFRF can be computed from the UV and IR luminosity functions of galaxies (see Mancuso et al. 2016a; Boco et al. 2019), since luminosity can be converted into SFR (e.g., Kennicutt 1998; Kennicutt & Evans 2012)....

    [...]

Journal ArticleDOI
TL;DR: In this article, far-infrared (FIR) photometry at 150 and 205 micron(s) of eight low-redshift starburst galaxies obtained with the Infrared Space Observatory (ISO) ISOPHOT is presented.
Abstract: We present far-infrared (FIR) photometry at 150 and 205 micron(s) of eight low-redshift starburst galaxies obtained with the Infrared Space Observatory (ISO) ISOPHOT. Five of the eight galaxies are detected in both wave bands, and these data are used, in conjunction with IRAS archival photometry, to model the dust emission at lambda approximately greater than 40 microns. The FIR spectral energy distributions (SEDs) are best fitted by a combination of two modified Planck functions, with T approx. 40 - 55 K (warm dust) and T approx. 20-23 K (cool dust) and with a dust emissivity index epsilon = 2. The cool dust can be a major contributor to the FIR emission of starburst galaxies, representing up to 60% of the total flux. This component is heated not only by the general interstellar radiation field, but also by the starburst itself. The cool dust mass is up to approx. 150 times larger than the warm dust mass, bringing the gas-to-dust ratios of the starbursts in our sample close to Milky Way values, once resealed for the appropriate metallicity. The ratio between the total dust FIR emission in the range 1-1000 microns and the IRAS FIR emission in the range 40 - 120 microns is approx. 1.75, with small variations from galaxy to galaxy. This ratio is about 40% larger than previously inferred from data at millimeter wavelengths. Although the galaxies in our sample are generally classified as "UV bright," for four of them the UV energy emerging shortward of 0.2 microns is less than 15% of the FIR energy. On average, about 30% of the bolometric flux is coming out in the UV-to-near-IR wavelength range; the rest is emitted in the FIR. Energy balance calculations show that the FIR emission predicted by the dust reddening of the UV-to-near-IR stellar emission is within a factor of approx. 2 of the observed value in individual galaxies and within 20% when averaged over a large sample. If our sample of local starbursts is representative of high-redshift (z approx. greater than 1), UV - bright star-forming galaxies, these galaxies' FIR emission will be generally undetected in submillimeter surveys, unless: (1) their bolometric luminosity is comparable to or larger than that of ultraluminous FIR galaxies and (2) their FIR SED contains a cool dust component.

5,255 citations

Journal ArticleDOI
TL;DR: In this paper, the Schmidt law was used to model the global star formation law, over the full range of gas densities and star formation rates (SFRs) observed in galaxies.
Abstract: Measurements of H-alpha, HI, and CO distributions in 61 normal spiral galaxies are combined with published far-infrared and CO observations of 36 infrared-selected starburst galaxies, in order to study the form of the global star formation law, over the full range of gas densities and star formation rates (SFRs) observed in galaxies. The disk-averaged SFRs and gas densities for the combined sample are well represented by a Schmidt law with index N = 1.4+-0.15. The Schmidt law provides a surprisingly tight parametrization of the global star formation law, extending over several orders of magnitude in SFR and gas density. An alternative formulation of the star formation law, in which the SFR is presumed to scale with the ratio of the gas density to the average orbital timescale, also fits the data very well. Both descriptions provide potentially useful "recipes" for modelling the SFR in numerical simulations of galaxy formation and evolution.

4,770 citations