scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Evolutionary ecology theory — microbial population structure

01 Oct 2021-Current Opinion in Microbiology (Elsevier Current Trends)-Vol. 63, pp 216-220
TL;DR: In this paper, the authors discuss endogenous and exogenous drivers of population structure in microbes and how the population structure can affect evolutionary dynamics and vice versa, and a particular interesting case arises when also this exogenous structure experiences feedbacks from the microbial population.
About: This article is published in Current Opinion in Microbiology.The article was published on 2021-10-01. It has received None citations till now. The article focuses on the topics: Population & Evolutionary dynamics.
References
More filters
Book
01 Jan 2001
TL;DR: A study of the issue indicates that it is not a serious problem for neutral theory, and there is sometimes a difference between some of the simulation-based results of Hubbell and the analytical results of Volkov et al. (2003).
Abstract: study of the issue indicates that it is not a serious problem for neutral theory, for reasons we discuss below. First, a bit of background. Hubbell (2001) derived the analytical expression for the stochastic mean and variance of the abundance of a single arbitrary species in a neutral community undergoing immigration from a metacommunity source area. However, his approach did not lend itself to an analytical solution for the distribution of relative species abundance (RSA) in a multispecies community for community sizes larger than a handful of individuals. As a result, all of Hubbell's RSA distributions for local communities were based on simulations. This problem was solved by Volkov et al. (2003), who derived an analytical expression for the RSA distribution in local communities of arbitrary size. However, as Chisholm and Burgman noted, there is sometimes a difference between some of the simulation-based results of Hubbell and the analytical results of Volkov et al. (2003). Chisholm and Burgman computed Volkov's equation and resimulated Hubbell's results for the four cases

5,317 citations

Journal ArticleDOI
TL;DR: A model is proposed for the evolution of the profile of a growing interface that exhibits nontrivial relaxation patterns, and the exact dynamic scaling form obtained for a one-dimensional interface is in excellent agreement with previous numerical simulations.
Abstract: A model is proposed for the evolution of the profile of a growing interface. The deterministic growth is solved exactly, and exhibits nontrivial relaxation patterns. The stochastic version is studied by dynamic renormalization-group techniques and by mappings to Burgers's equation and to a random directed-polymer problem. The exact dynamic scaling form obtained for a one-dimensional interface is in excellent agreement with previous numerical simulations. Predictions are made for more dimensions.

4,299 citations

Journal ArticleDOI
TL;DR: The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.

2,548 citations

Journal ArticleDOI
01 Nov 2017-Nature
TL;DR: A meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project is presented, creating both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity.
Abstract: Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity.

1,676 citations