scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Excellent energy storage properties and stability of NaNbO3–Bi(Mg0.5Ta0.5)O3 ceramics by introducing (Bi0.5Na0.5)0.7Sr0.3TiO3

02 Mar 2021-Journal of Materials Chemistry (The Royal Society of Chemistry)-Vol. 9, Iss: 8, pp 4789-4799
TL;DR: In this paper, a ternary system was designed to produce a dielectric ceramic with both high energy loss density (Wloss) under strong electric fields, maintaining high energy storage efficiency (η) is a challenge.
Abstract: NaNbO3-based (NN) energy storage ceramics exhibit high breakdown electric field strength (Eb) with large recoverable energy storage density (Wrec). However, due to their large energy loss density (Wloss) under strong electric fields, maintaining high energy storage efficiency (η) is a challenge. In this study, to produce a dielectric ceramic with both high Wrec and η, a ternary system was designed. By the addition of (Bi0.5Na0.5)0.7Sr0.3TiO3 (BNST), the grain size of 0.90NaNbO3–0.10Bi(Mg0.5Ta0.5)O3 (0.10BMT) was effectively reduced, and the long-range ordered structure was broken, providing an easily turned over dielectric domain to inhibit Wloss. The activation energy of the grain boundary increased with the increase in resistivity, indicating that the concentration of free vacancies at the grain boundary was low. The jump barrier of oxygen vacancies in the grain boundary increased, making up for the grain boundary defects, thus increasing Eb. When the BNST concentration increased, the Eb and Wrec of the dielectric ceramics increased. Optimum performance was obtained with the 0.75[0.90NaNbO3–0.10Bi(Mg0.5Ta0.5)O3]–0.25(Bi0.5Na0.5)0.7Sr0.3TiO3 (0.25BNST) ceramic, which exhibited an exceptionally high Eb (800 kV cm−1) and Wrec (8 J cm−3), while maintaining a relatively high η (90.4%). The ceramics developed in this study showed excellent temperature and frequency stability over 20–200 °C and 1–160 Hz, respectively. In addition, the dielectric properties of the ceramics were maintained after 10 000 hysteresis cycles. The 0.25BNST ceramic showed an exceptionally fast t0.9 (∼32 ns) and a high CD (614.5A cm−2). This study demonstrates that the energy storage performance and stability of the fabricated 0.25BNST ceramic are superior to those of previously reported dielectric ceramics.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the fundamental principles of energy storage in dielectric capacitors are introduced and a comprehensive review of the state-of-the-art is presented. But the authors do not consider the use of lead-free materials in high-temperature applications, since their toxicity raises concern over their use in consumer applications.
Abstract: Materials exhibiting high energy/power density are currently needed to meet the growing demand of portable electronics, electric vehicles and large-scale energy storage devices. The highest energy densities are achieved for fuel cells, batteries, and supercapacitors, but conventional dielectric capacitors are receiving increased attention for pulsed power applications due to their high power density and their fast charge-discharge speed. The key to high energy density in dielectric capacitors is a large maximum but small remanent (zero in the case of linear dielectrics) polarization and a high electric breakdown strength. Polymer dielectric capacitors offer high power/energy density for applications at room temperature, but above 100 °C they are unreliable and suffer from dielectric breakdown. For high-temperature applications, therefore, dielectric ceramics are the only feasible alternative. Lead-based ceramics such as La-doped lead zirconate titanate exhibit good energy storage properties, but their toxicity raises concern over their use in consumer applications, where capacitors are exclusively lead free. Lead-free compositions with superior power density are thus required. In this paper, we introduce the fundamental principles of energy storage in dielectrics. We discuss key factors to improve energy storage properties such as the control of local structure, phase assemblage, dielectric layer thickness, microstructure, conductivity, and electrical homogeneity through the choice of base systems, dopants, and alloying additions, followed by a comprehensive review of the state-of-the-art. Finally, we comment on the future requirements for new materials in high power/energy density capacitor applications.

396 citations

Journal ArticleDOI
Liang Chen, Shiqing Deng, Hui Liu, Jie Wu, He Qi, Jun Chen 
TL;DR: In this article , the authors proposed a high-entropy strategy to design local polymorphic distortion including rhombohedral-orthorhombic-tetragonal-cubic multiphase nanoclusters and random oxygen octahedral tilt, resulting in ultrasmall polar nanoregions, an enhanced breakdown electric field, and delayed polarization saturation.
Abstract: Abstract Next-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. However, thus far, the huge challenge of realizing ultrahigh recoverable energy storage density ( W rec ) accompanied by ultrahigh efficiency ( η ) still existed and has become a key bottleneck restricting the development of dielectric materials in cutting-edge energy storage applications. Here, we propose a high-entropy strategy to design “local polymorphic distortion” including rhombohedral-orthorhombic-tetragonal-cubic multiphase nanoclusters and random oxygen octahedral tilt, resulting in ultrasmall polar nanoregions, an enhanced breakdown electric field, and delayed polarization saturation. A giant W rec ~10.06 J cm −3 is realized in lead-free relaxor ferroelectrics, especially with an ultrahigh η ~90.8%, showing breakthrough progress in the comprehensive energy storage performance for lead-free bulk ceramics. This work opens up an effective avenue to design dielectric materials with ultrahigh comprehensive energy storage performance to meet the demanding requirements of advanced energy storage applications.

96 citations

Journal ArticleDOI
TL;DR: In this article , a synergistic optimization strategy was proposed to enhance DBS by tailoring grain size to submicron scale and inducing the temperature range between the maximum dielectric permittivity temperature ( T max ) and the Burns temperature (T B ) to room temperature, for solving the bottleneck.

92 citations

Journal ArticleDOI
TL;DR: In this paper, a relaxor antiferroelectric NaNbO3-BiFeO3 bulk dielectric ceramics was constructed for advanced energy storage capacitors.

71 citations

Journal ArticleDOI
TL;DR: In this article, the antiferroelectric NaNbO3 matrix was introduced into antiferromagnetic NaNiBO3 to form (Na1-3/2/2xBi3/ 2xNb1-xMgx)O3 solid solutions and the relaxor behavior was improved.

66 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present how renewable energy resources are currently being used, scientific developments to improve their use, their future prospects, and their deployment, and represent the impact of power electronics and smart grid technologies that can enable the proportionate share of renewable resources.
Abstract: Electric energy security is essential, yet the high cost and limited sources of fossil fuels, in addition to the need to reduce greenhouse gasses emission, have made renewable resources attractive in world energy-based economies. The potential for renewable energy resources is enormous because they can, in principle, exponentially exceed the world׳s energy demand; therefore, these types of resources will have a significant share in the future global energy portfolio, much of which is now concentrating on advancing their pool of renewable energy resources. Accordingly, this paper presents how renewable energy resources are currently being used, scientific developments to improve their use, their future prospects, and their deployment. Additionally, the paper represents the impact of power electronics and smart grid technologies that can enable the proportionate share of renewable energy resources.

1,990 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize the principles of dielectric energy-storage applications, and recent developments on different types of Dielectrics, namely linear dielectrics (LDE), paraelectric, ferroelectrics, and antiferro electrics, focusing on perovskite lead-free dielectors.

941 citations

Journal ArticleDOI
TL;DR: In this article, a hybridization between the Bi 6p and O 2p orbitals was proposed to improve the recoverable energy density (Wrec) of lead-free bulk ceramics.
Abstract: The development of lead-free bulk ceramics with high recoverable energy density (Wrec) is of decisive importance for meeting the requirements of advanced pulsed power capacitors toward miniaturization and integration. However, the Wrec (<2 J cm−3) of lead-free bulk ceramics has long been limited by their low dielectric breakdown strength (DBS < 200 kV cm−1) and small saturation polarization (Ps). In this work, a strategy (compositions control the grain size of lead-free ceramics to submicron scale to increase the DBS, and the hybridization between the Bi 6p and O 2p orbitals enhances the Ps) was proposed to improve the Wrec of lead-free ceramics. (K0.5Na0.5)NbO3–Bi(Me2/3Nb1/3)O3 solid solutions (where Me2+ = Mg and Zn) were designed for achieving large Ps, and high DBS and Wrec. As an example, (1 − x)(K0.5Na0.5)NbO3–xBi(Mg2/3Nb1/3)O3 (KNN–BMN) ceramics were prepared by using a conventional solid-state reaction process in this study. Large Ps (41 μC cm−2) and high DBS (300 kV cm−1) were obtained for 0.90KNN–0.10BMN ceramics, leading to large Wrec (4.08 J cm−3). The significantly enhanced Wrec is more than 2–3 times larger than that of other lead-free bulk ceramics. The findings in this study not only provide a design methodology for developing lead-free bulk ceramics with large Wrec but also could bring about the development of a series of KNN-based ceramics with significantly enhanced Wrec and DBS in the future. More importantly, this work opens a new research and application field (dielectric energy storage) for (K0.5Na0.5)NbO3-based ceramics.

439 citations

Journal ArticleDOI
TL;DR: In this article, a novel BaTiO3-based lead-free composition with an ultrahigh energy storage density (2.41 J cm−3) and a high energy storage efficiency of 91.6% was reported.
Abstract: The development of energy storage devices with a high energy storage density, high power density, and excellent stability has always been a long-cherished goal for many researchers as they tackle issues concerning energy conservation and environmental protection. In this work, we report a novel BaTiO3-based lead-free composition (0.85BaTiO3–0.15Bi(Zn1/2Sn1/2)O3) with an ultrahigh energy storage density (2.41 J cm−3) and a high energy storage efficiency of 91.6%, which is superior to other lead-free systems reported recently. The energy storage properties of 0.85BT–0.15BZS ceramic manifest excellent frequency stability (5–1000 Hz) and fatigue endurance (cycle number: 105). The pulsed charging–discharging process is measured to elucidate the actual operation performance in the 0.85BT–0.15BZS ceramic. Delightfully, the 0.85BT–0.15BZS ceramic also possesses an ultrahigh current density of 551 A cm−2 and a giant power density of 30.3 MW cm−3, and the stored energy is released in sub-microseconds. Moreover, the 0.85BT–0.15BZS ceramic exhibits outstanding temperature stability of its dielectric properties, energy storage properties, and charging–discharging performance over a broad temperature range (20–160 °C) due to the weakly-coupled relaxor behavior. These results not only indicate the superior potential of environment-friendly BaTiO3-based relaxor ferroelectric ceramics for the design of ceramic capacitors of both high energy storage and power applications, but they also show the merit of the weakly-coupled relaxor behavior to improve the thermal stability of energy storage properties.

384 citations

Journal ArticleDOI
Abstract: A novel lead-free polar dielectric ceramic with linear-like polarization responses was found in (1 − x)(Bi0.5Na0.5)TiO3–xNaNbO3 ((1 − x)BNT–xNN) solid solutions, exhibiting giant energy storage density/efficiency and super stability against temperature and frequency. High-resolution transmission electron microscopy, Raman scattering and Rietveld refinements of X-ray diffraction data suggest that these property characteristics can be derived from temperature and electric field insensitive large permittivity as a result of relaxor antiferroelectricity (AFE) with polar nanoregions. Additionally, this feature intrinsically requires a high driving field for AFE to ferroelectric (FE) phase transitions due to large random fields. Measurements of temperature-dependent permittivity and polarization versus electric field hysteresis loops indicate that the high-temperature AFE P4bm phase in BNT was gradually stabilized close to room temperature, accompanying a phase transition from relaxor rhombohedral FEs to relaxor tetragonal AFEs approximately at x = 0.15–0.2. A record high of recoverable energy-storage density W ∼ 7.02 J cm−3 as well as a high efficiency η ∼ 85% was simultaneously achieved in the x = 0.22 bulk ceramic, which challenges the existing fact that W and η must be seriously compromised. Furthermore, desirable W (>3.5 J cm−3) and η (>88%) with a variation of less than 10% can be accordingly obtained in the temperature range of 25–250 °C and frequency range of 0.1–100 Hz. These excellent energy-storage properties would make BNT-based lead-free AFE ceramic systems a potential candidate for application in pulsed power systems.

359 citations