scispace - formally typeset
Open AccessJournal ArticleDOI

Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities.

Reads0
Chats0
TLDR
The results pave the way for room-temperature polaritonic devices based on multiple-quantum-well van der Waals heterostructures, where polariton condensation and electrical polariton injection through the incorporation of graphene contacts may be realized.
Abstract
Layered materials can be assembled vertically to fabricate a new class of van der Waals heterostructures a few atomic layers thick, compatible with a wide range of substrates and optoelectronic device geometries, enabling new strategies for control of light-matter coupling. Here, we incorporate molybdenum diselenide/hexagonal boron nitride (MoSe2/hBN) quantum wells in a tunable optical microcavity. Part-light-part-matter polariton eigenstates are observed as a result of the strong coupling between MoSe2 excitons and cavity photons, evidenced from a clear anticrossing between the neutral exciton and the cavity modes with a splitting of 20 meV for a single MoSe2 monolayer, enhanced to 29 meV in MoSe2/hBN/MoSe2 double-quantum wells. The splitting at resonance provides an estimate of the exciton radiative lifetime of 0.4 ps. Our results pave the way for room-temperature polaritonic devices based on multiple-quantum-well van der Waals heterostructures, where polariton condensation and electrical polariton injection through the incorporation of graphene contacts may be realized.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides

TL;DR: In this paper, the electronic and optical properties and the recent progress in applications of 2D semiconductor transition metal dichalcogenides with emphasis on strong excitonic effects, and spin- and valley-dependent properties are reviewed.
Journal ArticleDOI

Valleytronics in 2D materials

TL;DR: In this article, the latest advances in valley-tronics have largely been enabled by the isolation of 2D materials (such as graphene and semiconducting transition metal dichalcogenides) that host an easily accessible electronic valley degree of freedom, allowing for dynamic control.
Journal ArticleDOI

Colloquium : Excitons in atomically thin transition metal dichalcogenides

TL;DR: In this article, the authors reviewed recent progress in understanding of the excitonic properties in monolayer transition metal dichalcogenides (TMDs) and future challenges are laid out.
Journal ArticleDOI

Polaritons in van der Waals materials

TL;DR: This work discusses polaritons in van der Waals (vdW) materials: layered systems in which individual atomic planes are bonded by weak vdW attraction, thus enabling unparalleled control of polaritonic response at the level of single atomic planes.
Journal ArticleDOI

Excitonic Linewidth Approaching the Homogeneous Limit in MoS 2 -Based van der Waals Heterostructures

TL;DR: In this article, the authors show that encapsulation of monolayer MoS2 in hexagonal boron nitride can efficiently suppress the inhomogeneous contribution to the exciton linewidth, as they measure in photoluminescence and reflectivity a FWHM down to 2 meV at T=4
References
More filters
Journal ArticleDOI

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Journal ArticleDOI

Atomically thin MoS2: a new direct-gap semiconductor

TL;DR: The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N=1,2,…,6 S-Mo-S monolayers have been investigated by optical spectroscopy and the effect of quantum confinement on the material's electronic structure is traced.
Journal ArticleDOI

Two-dimensional atomic crystals

TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Journal ArticleDOI

Van der Waals heterostructures

TL;DR: With steady improvement in fabrication techniques and using graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.
Journal ArticleDOI

Boron nitride substrates for high-quality graphene electronics

TL;DR: Graphene devices on h-BN substrates have mobilities and carrier inhomogeneities that are almost an order of magnitude better than devices on SiO(2).
Related Papers (5)