scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Exoskeleton robot for rehabilitation of elbow and forearm movements

TL;DR: In this paper, a 2DOF exoskeleton robot (ExoRob) was developed to provide naturalistic range movements of elbow (flexion/extension) and forearm (pronation/supination) motions.
Abstract: To perform essential daily activities the movement of shoulder, elbow, and wrist play a vital role and therefore proper functioning of upper-limb is very much essential. We therefore have been developing an exoskeleton robot (ExoRob) to rehabilitate and to ease upper limb motion. Toward to make a complete (i.e., 7DOF) upper-arm motion assisted robotic exoskeleton this paper focused on the development of a 2DOF exoskeleton robot to rehabilitate the elbow and forearm movements. The proposed 2DOF ExoRob is supposed to be worn on the lateral side of forearm and provide naturalistic range movements of elbow (flexion/extension) and forearm (pronation/supination) motions. This paper also focuses on the modeling and control of the proposed ExoRob. A kinematic model of the ExoRob has been developed based on modified Denavit-Hartenberg notations. Nonlinear sliding mode control technique is employed in dynamic simulation of the proposed ExoRob, where trajectory tracking that corresponds to typical rehab (passive) exercises has been carried out to evaluate the effectiveness of the developed model and controller. Simulated results show that the controller is able to maneuver the ExoRob efficiently to track the desired trajectories, which in this case consisted in passive arm movements. These movements are widely used in rehab therapy and could be performed efficiently with the developed ExoRob and the controller.
Citations
More filters
Journal ArticleDOI
TL;DR: The recent progress of upper limb exoskeleton robots for rehabilitation treatment of patients with neuromuscular disorders and the fundamental challenges in developing these devices are described.

475 citations

Journal ArticleDOI
TL;DR: A compendium of the different transmission systems found in the literature, addressing their advantages, disadvantages and their requirements for the design is presented, focusing on their advantages in terms of anatomical mechanics.

56 citations

Journal ArticleDOI
TL;DR: A combined methodology for type and size optimization is proposed and applied to a cable driven parallel robot, which is intended for upper-limb rehabilitation exercises, and four different topology solutions have been considered for LAWEX robot.

44 citations

Journal ArticleDOI
TL;DR: In this article, an adaptive nonlinear control scheme, which uses a new reaching law-based sliding mode control strategy, is proposed for a 5DOF upper-limb exoskeleton robot used for passive rehabilitation therapy.
Abstract: This paper investigates the control of a 5-DOF upper-limb exoskeleton robot used for passive rehabilitation therapy. The robot is subject to uncertain dynamics, disturbance torques, unavailable full-state measurement, and different types of actuation faults. An adaptive nonlinear control scheme, which uses a new reaching law-based sliding mode control strategy, is proposed. This scheme incorporates a high-gain state observer with dynamic high-gain matrix and a fuzzy neural network (FNN) for state vector and nonlinear dynamics estimation, respectively. Using dynamic parameters, the scheme provides an efficient mean for simultaneously tackling the effects of FNN approximation errors, disturbance torques and actuation faults without any prior bounds knowledge and fault detection and diagnosis components. Using simulation results, it is shown that with the presented scheme, faster response, fewer oscillations during transient phase, good tracking accuracy, and chattering-free control torques with lower amplitudes are obtained.

37 citations

Proceedings ArticleDOI
06 Jul 2010
TL;DR: In this article, a 2DOF exoskeleton robot is designed to wear on the lateral side of the forearm in order to provide naturalistic movements (i.e., flexion/extension and radial/ulnar deviation) of the wrist joint.
Abstract: As a stage toward a complete upper-arm motion assisted exoskeleton robot (i.e., 7DOF) this paper focused on the development of a 2DOF exoskeleton robot to rehabilitate and to ease wrist joint movements. To perform essential daily activities the movement of shoulder, elbow, and wrist play a vital role and proper functioning of the upper-limb is essential. We therefore have been developing an exoskeleton robot (ExoRob) to rehabilitate and to ease upper limb motion. The proposed 2DOF ExoRob is designed to be worn on the lateral side of the forearm in order to provide naturalistic movements (i.e., flexion/extension and radial/ulnar deviation) of the wrist joint. This paper also focuses on the modeling and control of the proposed ExoRob. A kinematic model of ExoRob has been developed based on modified Denavit-Hartenberg notations. In dynamic simulations of the proposed ExoRob, a nonlinear sliding mode control technique is employed, where trajectory tracking that corresponds to typical rehab (passive) exercises has been carried out to evaluate the performances of the developed model and controller. Moreover experiments were carried out with PID controller to further evaluate the developed model regard to trajectory tracking. Simulated and experimental results show that the controller is able to maneuver the ExoRob efficiently to track the desired trajectories, which in this case consisted in passive arm movements. Such movements are typically used in rehabilitation and could be performed very efficiently with the developed ExoRob and the controller.

28 citations

References
More filters
Book
01 May 1990
TL;DR: The Fourth Edition of Biomechanics as an Interdiscipline: A Review of the Fourth Edition focuses on biomechanical Electromyography, with a focus on the relationship between Electromyogram and Biomechinical Variables.
Abstract: Preface to the Fourth Edition. 1 Biomechanics as an Interdiscipline. 1.0 Introduction. 1.1 Measurement, Description, Analysis, and Assessment. 1.2 Biomechanics and its Relationship with Physiology and Anatomy. 1.3 Scope of the Textbook. 1.4 References. 2 Signal Processing. 2.0 Introduction. 2.1 Auto- and Cross-Correlation Analyses. 2.2 Frequency Analysis. 2.3 Ensemble Averaging of Repetitive Waveforms. 2.4 References. 3 Kinematics. 3.0 Historical Development and Complexity of Problem. 3.1 Kinematic Conventions. 3.2 Direct Measurement Techniques. 3.3 Imaging Measurement Techniques. 3.4 Processing of Raw Kinematic Data. 3.5 Calculation of Other Kinematic Variables. 3.6 Problems Based on Kinematic Data. 3.7 References. 4 Anthropometry. 4.0 Scope of Anthropometry in Movement Biomechanics. 4.1 Density, Mass, and Inertial Properties. 4.2 Direct Experimental Measures. 4.3 Muscle Anthropometry. 4.4 Problems Based on Anthropometric Data. 4.5 References. 5 Kinetics: Forces and Moments of Force. 5.0 Biomechanical Models. 5.1 Basic Link-Segment Equations-the Free-Body Diagram. 5.2 Force Transducers and Force Plates. 5.3 Bone-on-Bone Forces During Dynamic Conditions. 5.4 Problems Based on Kinetic and Kinematic Data. 5.5 References. 6 Mechanical Work, Energy, and Power. 6.0 Introduction. 6.1 Efficiency. 6.2 Forms of Energy Storage. 6.3 Calculation of Internal and External Work. 6.4 Power Balances at Joints and Within Segments. 6.5 Problems Based on Kinetic and Kinematic Data. 6.6 References. 7 Three-Dimensional Kinematics and Kinetics. 7.0 Introduction. 7.1 Axes Systems. 7.2 Marker and Anatomical Axes Systems. 7.3 Determination of Segment Angular Velocities and Accelerations. 7.4 Kinetic Analysis of Reaction Forces and Moments. 7.5 Suggested Further Reading. 7.6 References. 8 Synthesis of Human Movement-Forward Solutions. 8.0 Introduction. 8.1 Review of Forward Solution Models. 8.2 Mathematical Formulation. 8.3 System Energy. 8.4 External Forces and Torques. 8.5 Designation of Joints. 8.6 Illustrative Example. 8.7 Conclusions. 8.8 References. 9 Muscle Mechanics. 9.0 Introduction. 9.1 Force-Length Characteristics of Muscles. 9.2 Force-Velocity Characteristics. 9.3 Muscle Modeling. 9.4 References. 10 Kinesiological Electromyography. 10.0 Introduction. 10.1 Electrophysiology of Muscle Contraction. 10.2 Recording of the Electromyogram. 10.3 Processing of the Electromyogram,. 10.4 Relationship between Electromyogram and Biomechanical Variables. 10.5 References. 11 Biomechanical Movement Synergies. 11.0 Introduction. 11.1 The Support Moment Synergy. 11.2 Medial/Lateral and Anterior/Posterior Balance in Standing. 11.3 Dynamic Balance during Walking. 11.4 References. APPENDICES. A. Kinematic, Kinetic, and Energy Data. Figure A.1 Walking Trial-Marker Locations and Mass and Frame Rate Information. Table A.1 Raw Coordinate Data (cm). Table A.2( a ) Filtered Marker Kinematics-Rib Cage and Greater Trochanter (Hip). Table A.2( b ) Filtered Marker Kinematics-Femoral Lateral Epicondyle (Knee) and Head of Fibula. Table A.2( c ) Filtered Marker Kinematics-Lateral Malleolus (Ankle) and Heel. Table A.2( d ) Filtered Marker Kinematics-Fifth Metatarsal and Toe. Table A.3( a ) Linear and Angular Kinematics-Foot. Table A.3( b ) Linear and Angular Kinematics-Leg. Table A.3( c ) Linear and Angular Kinematics-Thigh. Table A.3( d ) Linear and Angular Kinematics-1/2 HAT. Table A.4 Relative Joint Angular Kinematics-Ankle, Knee, and Hip. Table A.5( a ) Reaction Forces and Moments of Force-Ankle and Knee. Table A.5( b ) Reaction Forces and Moments of Force-Hip. Table A.6 Segment Potential, Kinetic, and Total Energies-Foot, Leg, Thigh, and1/2 HAT. Table A.7 Power Generation/Absorption and Transfer-Ankle, Knee, and Hip. B. Units and Definitions Related to Biomechanical and Electromyographical Measurements. Table B.1 Base SI Units. Table B.2 Derived SI Units. Index.

9,092 citations


"Exoskeleton robot for rehabilitatio..." refers methods in this paper

  • ...SIMULATION To produce dynamic simulations of the proposed 2DOF ExoRob parametes such as masses of different link segments and inertia parameters, are estimated [17] according to the upper limb properties of a typical adult [13]....

    [...]

  • ...In dynamic modeling and simulation, robot parameters such as robot arm link lengths, masses, and inertia, are estimated according to the upper limb properties of a typical adult [13]....

    [...]

Journal ArticleDOI
TL;DR: The present conceptual framework provides insights into principles of motor performance, and it links the study of physical action to research on sensation, perception, and cognition, where psychologists have been concerned for some time about the degree to which mental processes incorporate rational and normative rules.
Abstract: A stochastic optimized-submovement model is proposed for Pitts' law, the classic logarithmic tradeoff between the duration and spatial precision of rapid aimed movements. According to the model, an aimed movement toward a specified target region involves a primary submovement and an optional secondary corrective submovement. The submovements are assumed to be programmed such that they minimize average total movement time while maintaining a high frequency of target hits. The programming process achieves this minimization by optimally adjusting the average magnitudes and durations of noisy neuromotor force pulses used to generate the submovements. Numerous results from the literature on human motor performance may be explained in these terms. Two new experiments on rapid wrist rotations yield additional support for the stochastic optimizedsubmovement model. Experiment 1 revealed that the mean durations of primary submovements and of secondary submovements, not just average total movement times, conform to a square-root approximation of Pitts' law derived from the model. Also, the spatial endpoints of primary submovements have standard deviations that increase linearly with average primary-submovement velocity, and the average primary-submovement velocity influences the relative frequencies of secondary submovements, as predicted by the model. During Experiment 2, these results were replicated and extended under conditions in which subjects made movements without concurrent visual feedback. This replication suggests that submovement optimization may be a pervasive property of movement production. The present conceptual framework provides insights into principles of motor performance, and it links the study of physical action to research on sensation, perception, and cognition, where psychologists have been concerned for some time about the degree to which mental processes incorporate rational and normative rules. An enduring issue in the study of the human mind concerns of mathematical probability theory and statistical decision thethe rationality and optimality of the mental processes that guide ory (e.g., see Edwards, 1961; Edwards, Lindman, & Savage,

1,361 citations

Journal ArticleDOI
01 Mar 1998
TL;DR: Evidence is presented that robot-aided therapy does not have adverse effects, that patients tolerate the procedure, and that peripheral manipulation of the impaired limb may influence brain recovery, and one approach using kinematic data in a robot- aided assessment procedure.
Abstract: The authors' goal is to apply robotics and automation technology to assist, enhance, quantify, and document neurorehabilitation. This paper reviews a clinical trial involving 20 stroke patients with a prototype robot-aided rehabilitation facility developed at the Massachusetts Institute of Technology, Cambridge, (MIT) and tested at Burke Rehabilitation Hospital, White Plains, NY. It also presents the authors' approach to analyze kinematic data collected in the robot-aided assessment procedure. In particular, they present evidence (1) that robot-aided therapy does not have adverse effects, (2) that patients tolerate the procedure, and (3) that peripheral manipulation of the impaired limb may influence brain recovery. These results are based on standard clinical assessment procedures. The authors also present one approach using kinematic data in a robot-aided assessment procedure.

1,346 citations

Journal Article
TL;DR: Clinical trials comparing 3-D robot-assisted therapy to traditional therapy in 21 chronic stroke subjects showed significant improvement in the Fugl-Meyer measure of motor recovery in the robot group, which exceeded improvements in the control group.
Abstract: For over 25 years, personal assistant robots for severely disabled individuals have been in development More recently, using robots to deliver rehabilitation therapy has been proposed This paper summarizes the development and clinical testing of three mechatronic systems for post-stroke therapy conducted at the VA Palo Alto in collaboration with Stanford University We describe the philosophy and experiences that guided their evolution Unique to the Palo Alto approach is provision for bimanual, mirror-image, patient-controlled therapeutic exercise Proof-of-concept was established with a 2-degree-of-freedom (DOF) elbow/forearm manipulator Tests of a second-generation therapy robot producing planar forearm movements in 19 hemiplegic and control subjects confirmed the validity and reliability of interaction forces during mechanically assisted upper-limb movements Clinical trials comparing 3-D robot-assisted therapy to traditional therapy in 21 chronic stroke subjects showed significant improvement in the Fugl-Meyer (FM) measure of motor recovery in the robot group, which exceeded improvements in the control group

683 citations

01 Jan 1983

626 citations


"Exoskeleton robot for rehabilitatio..." refers background in this paper

  • ...Time(sec) TABLE IV REGRESSION COEFFICIENTS FOR INERTIA CHARACTERISTICS OF UPPER LIMB [19] Limb Segment Constant Body Weight (kg) Stature (cm) R...

    [...]

  • ...TABLE III MASS CHARACTERISTICS OF UPPER LIMB [19]...

    [...]