scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells

07 May 2007-Nature Cell Biology (Nature Publishing Group)-Vol. 9, Iss: 6, pp 654-659
TL;DR: It is shown that exosomes contain both mRNA and microRNA, which can be delivered to another cell, and can be functional in this new location, and it is proposed that this RNA is called “exosomal shuttle RNA” (esRNA).
Abstract: Exosomes are vesicles of endocytic origin released by many cells. These vesicles can mediate communication between cells, facilitating processes such as antigen presentation. Here, we show that exosomes from a mouse and a human mast cell line (MC/9 and HMC-1, respectively), as well as primary bone marrow-derived mouse mast cells, contain RNA. Microarray assessments revealed the presence of mRNA from approximately 1300 genes, many of which are not present in the cytoplasm of the donor cell. In vitro translation proved that the exosome mRNAs were functional. Quality control RNA analysis of total RNA derived from exosomes also revealed presence of small RNAs, including microRNAs. The RNA from mast cell exosomes is transferable to other mouse and human mast cells. After transfer of mouse exosomal RNA to human mast cells, new mouse proteins were found in the recipient cells, indicating that transferred exosomal mRNA can be translated after entering another cell. In summary, we show that exosomes contain both mRNA and microRNA, which can be delivered to another cell, and can be functional in this new location. We propose that this RNA is called "exosomal shuttle RNA" (esRNA).

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Evidence that high-density lipoprotein (HDL) transports endogenous miRNAs and delivers them to recipient cells with functional targeting capabilities is presented, indicating that HDL participates in a mechanism of intercellular communication involving the transport and delivery of miRNA.
Abstract: Circulating microRNAs (miRNA) are relatively stable in plasma and are a new class of disease biomarkers. Here we present evidence that high-density lipoprotein (HDL) transports endogenous miRNAs and delivers them to recipient cells with functional targeting capabilities. Cellular export of miRNAs to HDL was demonstrated to be regulated by neutral sphingomyelinase. Reconstituted HDL injected into mice retrieved distinct miRNA profiles from normal and atherogenic models. HDL delivery of both exogenous and endogenous miRNAs resulted in the direct targeting of messenger RNA reporters. Furthermore, HDL-mediated delivery of miRNAs to recipient cells was demonstrated to be dependent on scavenger receptor class B type I. The human HDL-miRNA profile of normal subjects is significantly different from that of familial hypercholesterolemia subjects. Notably, HDL-miRNA from atherosclerotic subjects induced differential gene expression, with significant loss of conserved mRNA targets in cultured hepatocytes. Collectively, these observations indicate that HDL participates in a mechanism of intercellular communication involving the transport and delivery of miRNAs.

2,410 citations

Journal ArticleDOI
TL;DR: It is suggested that microRNA profiling of circulating tumor exosomes could potentially be used as surrogate diagnostic markers for biopsy profiling, extending its utility to screening asymptomatic populations.

2,296 citations

Journal ArticleDOI
TL;DR: The changes in miRNA spectra observed in the urine samples from patients with different urothelial conditions demonstrates the potential for using concentrations of specific miRNAs in body fluids as biomarkers for detecting and monitoring various physiopathological conditions.
Abstract: BACKGROUND: MicroRNAs (miRNAs) are small, noncoding RNAs that play an important role in regulating various biological processes through their interaction with cellular messenger RNAs. Extracellular miRNAs in serum, plasma, saliva, and urine have recently been shown to be associated with various pathological conditions including cancer. METHODS: With the goal of assessing the distribution of miRNAs and demonstrating the potential use of miRNAs as biomarkers, we examined the presence of miRNAs in 12 human body fluids and urine samples from women in different stages of pregnancy or patients with different urothelial cancers. Using quantitativePCR,weconductedaglobalsurveyofthemiRNA distribution in these fluids. RESULTS: miRNAs were present in all fluids tested and showed distinct compositions in different fluid types. Several of the highly abundant miRNAs in these fluids werecommonamongmultiplefluidtypes,andsomeof the miRNAs were enriched in specific fluids. We also observeddistinctmiRNApatternsintheurinesamples obtained from individuals with different physiopathological conditions. CONCLUSIONS: MicroRNAs are ubiquitous in all the body fluid types tested. Fluid type–specific miRNAs may have functional roles associated with the surrounding tissues. In addition, the changes in miRNA spectra observed in the urine samples from patients with different urothelial conditions demonstrates the potential for using concentrations of specific miRNAs in body fluids as biomarkers for detecting and monitoring various physiopathological conditions. © 2010 American Association for Clinical Chemistry

2,288 citations

Journal ArticleDOI
TL;DR: This review focuses on various strategies for purifying exosomes and discusses their biophysical and biochemical properties, and an update on proteomic analysis of exosome from various cell types and body fluids is provided and host-cell specific proteomic signatures are discussed.

2,093 citations


Cites background or methods from "Exosome-mediated transfer of mRNAs ..."

  • ...[27] Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO....

    [...]

  • ...The 19 exosomal studies used for this analysiswere derived fromdendritic cells [20],melanoma cells [23], urine [24,25], microglia [26], mast cells [27], colorectal cancer cells [28,29], mesothelioma cells [30], brain tumor [31], oligodendrocytes [32], tracheobronchial cells [33], hepatocytes...

    [...]

Journal ArticleDOI
TL;DR: The current knowledge on the specificities of exosomes and other types of extracellular vesicles, and their roles as important agents of cell-to-cell communication are discussed.
Abstract: The ability of exosomes to transfer cargo from donor to acceptor cells, thereby triggering phenotypic changes in the latter, has generated substantial interest in the scientific community. However, the extent to which exosomes differ from other extracellular vesicles in terms of their biogenesis and functions remains ill-defined. Here, we discuss the current knowledge on the specificities of exosomes and other types of extracellular vesicles, and their roles as important agents of cell-to-cell communication.

2,056 citations

References
More filters
Journal ArticleDOI
TL;DR: PicTar, a computational method for identifying common targets of micro RNAs, is presented and widespread coordinate control executed by microRNAs is suggested, thus providing evidence for coordinate microRNA control in mammals.
Abstract: MicroRNAs are small noncoding RNAs that recognize and bind to partially complementary sites in the 3' untranslated regions of target genes in animals and, by unknown mechanisms, regulate protein production of the target transcript. Different combinations of microRNAs are expressed in different cell types and may coordinately regulate cell-specific target genes. Here, we present PicTar, a computational method for identifying common targets of microRNAs. Statistical tests using genome-wide alignments of eight vertebrate genomes, PicTar's ability to specifically recover published microRNA targets, and experimental validation of seven predicted targets suggest that PicTar has an excellent success rate in predicting targets for single microRNAs and for combinations of microRNAs. We find that vertebrate microRNAs target, on average, roughly 200 transcripts each. Furthermore, our results suggest widespread coordinate control executed by microRNAs. In particular, we experimentally validate common regulation of Mtpn by miR-375, miR-124 and let-7b and thus provide evidence for coordinate microRNA control in mammals.

4,660 citations


"Exosome-mediated transfer of mRNAs ..." refers background in this paper

  • ...Hypothetically, the 121 miRNAs that we have found in the mast cell exosomes may interfere with 24,000 mRNAs as it has been suggested that each species may interact with up to 200 mRNA...

    [...]

Journal ArticleDOI
TL;DR: It is demonstrated by immunoelectron microscopy that the limiting membrane of MIICs can fuse directly with the plasma membrane, resulting in release from the cells of internal MHC class II-containing vesicles, suggesting a role for exosomes in antigen presentation in vivo.
Abstract: Antigen-presenting cells contain a specialized late endocytic compartment, MIIC (major histocompatibility complex [MHC] class II-enriched compartment), that harbors newly synthesized MHC class II molecules in transit to the plasma membrane. MIICs have a limiting membrane enclosing characteristic internal membrane vesicles. Both the limiting membrane and the internal vesicles contain MHC class II. In this study on B lymphoblastoid cells, we demonstrate by immunoelectron microscopy that the limiting membrane of MIICs can fuse directly with the plasma membrane, resulting in release from the cells of internal MHC class II-containing vesicles. These secreted vesicles, named exosomes, were isolated from the cell culture media by differential centrifugation followed by flotation on sucrose density gradients. The overall surface protein composition of exosomes differed significantly from that of the plasma membrane. Exosome-bound MHC class II was in a compact, peptide-bound conformation. Metabolically labeled MHC class II was released into the extracellular medium with relatively slow kinetics, 10 +/- 4% in 24 h, indicating that direct fusion of MIICs with the plasma membrane is not the major pathway by which MHC class II reaches the plasma membrane. Exosomes derived from both human and murine B lymphocytes induced antigen-specific MHC class II-restricted T cell responses. These data suggest a role for exosomes in antigen presentation in vivo.

2,978 citations

Journal ArticleDOI
TL;DR: The results indicate that exosome isolation may provide an efficient first step in biomarker discovery in urine and identify numerous protein components of MVBs and of the endosomal pathway in general.
Abstract: Urine provides an alternative to blood plasma as a potential source of disease biomarkers. One urinary biomarker already exploited in clinical studies is aquaporin-2. However, it remains a mystery how aquaporin-2 (an integral membrane protein) and other apical transporters are delivered to the urine. Here we address the hypothesis that these proteins reach the urine through the secretion of exosomes [membrane vesicles that originate as internal vesicles of multivesicular bodies (MVBs)]. Low-density urinary membrane vesicles from normal human subjects were isolated by differential centrifugation. ImmunoGold electron microscopy using antibodies directed to cytoplasmic or anticytoplasmic epitopes revealed that the vesicles are oriented "cytoplasmic-side inward," consistent with the unique orientation of exosomes. The vesicles were small (<100 nm), consistent with studies of MVBs and exosomes from other tissues. Proteomic analysis of urinary vesicles through nanospray liquid chromatography-tandem mass spectrometry identified numerous protein components of MVBs and of the endosomal pathway in general. Full liquid chromatography-tandem MS analysis revealed 295 proteins, including multiple protein products of genes already known to be responsible for renal and systemic diseases, including autosomal dominant polycystic kidney disease, Gitelman syndrome, Bartter syndrome, autosomal recessive syndrome of osteopetrosis with renal tubular acidosis, and familial renal hypomagnesemia. The results indicate that exosome isolation may provide an efficient first step in biomarker discovery in urine.

1,941 citations

Journal ArticleDOI
01 Jul 1983-Cell
TL;DR: The fate of the transferrin receptor during in vitro maturation of sheep reticulocytes has been followed using FITC- and 125I-labeled anti-transferrin-receptor antibodies and it can be shown that at 0 degree C or in phosphate-buffered saline the rate of vesicle release is less than that at 37 degrees C in culture medium.

1,543 citations


"Exosome-mediated transfer of mRNAs ..." refers background in this paper

  • ...Many cells have the capacity to release exosomes, including reticulocyte...

    [...]

Journal ArticleDOI
01 May 2006-Leukemia
TL;DR: ES-MV isolated from murine ES cells in serum-free cultures significantly enhanced survival and improved expansion of murine HPC, and upregulated the expression of early pluripotent and early hematopoietic stem cells in these cells.
Abstract: Membrane-derived vesicles (MV) are released from the surface of activated eucaryotic cells and exert pleiotropic effects on surrounding cells. Since the maintenance of pluripotency and undifferentiated propagation of embryonic stem (ES) cells in vitro requires tight cell to cell contacts and effective intercellular signaling, we hypothesize that MV derived from ES cells (ES-MV) express stem cell-specific molecules that may also support self-renewal and expansion of adult stem cells. To address this hypothesis, we employed expansion of hematopoietic progenitor cells (HPC) as a model. We found that ES-MV (10 microg/ml) isolated from murine ES cells (ES-D3) in serum-free cultures significantly (i) enhanced survival and improved expansion of murine HPC, (ii) upregulated the expression of early pluripotent (Oct-4, Nanog and Rex-1) and early hematopoietic stem cells (Scl, HoxB4 and GATA 2) markers in these cells, and (iii) induced phosphorylation of MAPK p42/44 and serine-threonine kinase AKT. Furthermore, molecular analysis revealed that ES-MV express Wnt-3 protein and are selectively highly enriched in mRNA for several pluripotent transcription factors as compared to parental ES cells. More important, this mRNA could be delivered by ES-MV to target cells and translated into the corresponding proteins. The biological effects of ES-MV were inhibited after heat inactivation or pretreatment with RNAse, indicating a major involvement of protein and mRNA components of ES-MV in the observed phenomena. We postulate that ES-MV may efficiently expand HPC by stimulating them with ES-MV expressed ligands (e.g., Wnt-3) as well as increase their pluripotency after horizontal transfer of ES-derived mRNA.

1,464 citations