scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Exosomes secreted by cardiomyocytes subjected to ischaemia promote cardiac angiogenesis.

TL;DR: It is established that exosomes secreted by cardiomyocytes under ischaemic conditions promote heart angiogenesis, which may pave the way towards the development of add-on therapies to enhance myocardial blood supply.
Abstract: Aims Myocardial infarction (MI) is the leading cause of morbidity and mortality worldwide and results from an obstruction in the blood supply to a region of the heart. In an attempt to replenish oxygen and nutrients to the deprived area, affected cells release signals to promote the development of new vessels and confer protection against MI. However, the mechanisms underlying the growth of new vessels in an ischaemic scenario remain poorly understood. Here, we show that cardiomyocytes subjected to ischaemia release exosomes that elicit an angiogenic response of endothelial cells (ECs). Methods and results Exosomes secreted by H9c2 myocardial cells and primary cardiomyocytes, cultured either in control or ischaemic conditions were isolated and added to ECs. We show that ischaemic exosomes, in comparison with control exosomes, confer protection against oxidative-induced lesion, promote proliferation, and sprouting of ECs, stimulate the formation of capillary-like structures and strengthen adhesion complexes and barrier properties. Moreover, ischaemic exosomes display higher levels of metalloproteases (MMP) and promote the secretion of MMP by ECs. We demonstrate that miR-222 and miR-143, the relatively most abundant miRs in ischaemic exosomes, partially recapitulate the angiogenic effect of exosomes. Additionally, we show that ischaemic exosomes stimulate the formation of new functional vessels in vivo using in ovo and Matrigel plug assays. Finally, we demonstrate that intramyocardial delivery of ischaemic exosomes improves neovascularization following MI. Conclusions This study establishes that exosomes secreted by cardiomyocytes under ischaemic conditions promote heart angiogenesis, which may pave the way towards the development of add-on therapies to enhance myocardial blood supply.
Citations
More filters
01 Jan 2013
TL;DR: In this paper, a multimedia patient education program provided with trained health professional follow-up was shown to reduce falls among cognitively intact hospital patients, with a 52% probability the complete program was both more effective and less costly (from the health service perspective) than providing usual care alone.
Abstract: Background Falls are one of the most frequently occurring adverse events that impact upon the recovery of older hospital inpatients. Falls can threaten both immediate and longer-term health and independence. There is need to identify cost-effective means for preventing falls in hospitals. Hospital-based falls prevention interventions tested in randomized trials have not yet been subjected to economic evaluation. Methods Incremental cost-effectiveness analysis was undertaken from the health service provider perspective, over the period of hospitalization (time horizon) using the Australian Dollar (A$) at 2008 values. Analyses were based on data from a randomized trial among n = 1,206 acute and rehabilitation inpatients. Decision tree modeling with three-way sensitivity analyses were conducted using burden of disease estimates developed from trial data and previous research. The intervention was a multimedia patient education program provided with trained health professional follow-up shown to reduce falls among cognitively intact hospital patients. Results The short-term cost to a health service of one cognitively intact patient being a faller could be as high as A$14,591 (2008). The education program cost A$526 (2008) to prevent one cognitively intact patient becoming a faller and A$294 (2008) to prevent one fall based on primary trial data. These estimates were unstable due to high variability in the hospital costs accrued by individual patients involved in the trial. There was a 52% probability the complete program was both more effective and less costly (from the health service perspective) than providing usual care alone. Decision tree modeling sensitivity analyses identified that when provided in real life contexts, the program would be both more effective in preventing falls among cognitively intact inpatients and cost saving where the proportion of these patients who would otherwise fall under usual care conditions is at least 4.0%. Conclusions This economic evaluation was designed to assist health care providers decide in what circumstances this intervention should be provided. If the proportion of cognitively intact patients falling on a ward under usual care conditions is 4% or greater, then provision of the complete program in addition to usual care will likely both prevent falls and reduce costs for a health service.

265 citations

Journal ArticleDOI
TL;DR: Vesicles secreted from stem or progenitor cells and from differentiated somatic cells have regenerative properties in the context of myocardial infarction, ischaemic limb disease and stroke.
Abstract: Extracellular vesicles (EVs) are a heterogeneous group of natural particles that are relevant to the treatment of cardiovascular diseases. These endogenous vesicles have certain properties that allow them to survive in the extracellular space, bypass biological barriers and deliver their biologically active molecular cargo to recipient cells. Moreover, EVs can be bioengineered to increase their stability, bioactivity, presentation to acceptor cells and capacity for on-target binding at both cell-type-specific and tissue-specific levels. Bioengineering of EVs involves the modification of the donor cell before EV isolation or direct modification of the EV properties after isolation. The therapeutic potential of native EVs and bioengineered EVs has been only minimally explored in the context of cardiovascular diseases. Efforts to harness the therapeutic potential of EVs will require innovative approaches and a comprehensive integration of knowledge gathered from decades of research into molecular-compound delivery. In this Review, we outline the endogenous properties of EVs that make them natural delivery agents as well as the features that can be improved by bioengineering. We also discuss the therapeutic applications of native and bioengineered EVs to cardiovascular diseases and examine the opportunities and challenges that need to be addressed to advance this research area, with an emphasis on clinical translation. Extracellular vesicles are a heterogeneous group of natural particles that can deliver their biologically active molecular cargo to recipient cells. In this Review, the authors outline the endogenous properties of extracellular vesicles that make them natural delivery agents and the features that can be improved by bioengineering for the treatment of cardiovascular diseases.

190 citations

Journal ArticleDOI
13 Oct 2018-Cells
TL;DR: How EV-associated matrix-remodeling enzymes and regulators act as novel mediators of extracellular matrix degradation to prepare a permissive environment for various pathological conditions such as cancer, cardiovascular diseases, arthritis and metabolic diseases are discussed.
Abstract: Extracellular vesicles (EVs) are membrane enclosed micro- and nano-sized vesicles that are secreted from almost every species, ranging from prokaryotes to eukaryotes, and from almost every cell type studied so far. EVs contain repertoire of bioactive molecules such as proteins (including enzymes and transcriptional factors), lipids, carbohydrates and nucleic acids including DNA, coding and non-coding RNAs. The secreted EVs are taken up by neighboring cells where they release their content in recipient cells, or can sail through body fluids to reach distant organs. Since EVs transport bioactive cargo between cells, they have emerged as novel mediators of extra- and intercellular activities in local microenvironment and inter-organ communications distantly. Herein, we review the activities of EV-associated matrix-remodeling enzymes such as matrix metalloproteinases, heparanases, hyaluronidases, aggrecanases, and their regulators such as extracellular matrix metalloproteinase inducers and tissue inhibitors of metalloproteinases as novel means of matrix remodeling in physiological and pathological conditions. We discuss how such EVs act as novel mediators of extracellular matrix degradation to prepare a permissive environment for various pathological conditions such as cancer, cardiovascular diseases, arthritis and metabolic diseases. Additionally, the roles of EV-mediated matrix remodeling in tissue repair and their potential applications as organ therapies have been reviewed. Collectively, this knowledge could benefit the development of new approaches for tissue engineering.

129 citations


Cites background from "Exosomes secreted by cardiomyocytes..."

  • ...It has been shown that ischemic EVs confer protection against oxidative-induced lesion, promote proliferation and sprouting of ECs and stimulate cardiac angiogenesis [197]....

    [...]

Journal ArticleDOI
TL;DR: CircHIPK3 in HPC-exos plays a role in CMVECs under oxidative conditions through miR-29a-mediated IGF-1 expression, leading to a decrease in oxidative stress-induced CMV ECs dysfunction.
Abstract: Background/Aims. Circular RNAs (circRNAs) are a class of endogenous noncoding RNAs that regulate gene expression in eukaryotes. Recently, exosomes from cardiomyocytes (CMs) have been found to facilitate cell proliferation and survival by transporting various bioactive molecules, including circRNA. However, the functions of exosomal circRNAs are not clear. The present research is aimed at determining whether circHIPK3 released from hypoxia-pretreated CMs is transferred into cardiac microvascular endothelial cells (CMVECs) by exosomes and becomes functionally active in the CMVECs under oxidative stress conditions. Methods. Quantitative polymerase chain reactions were conducted to detect the expression pattern of circHIPK3 in CMVECs under oxidative stress. Annexin V-FITC/propidium iodide (PI) staining assays, TUNEL assays, ROS assays, and Western blot analysis were conducted to detect the role of exosomal circHIPK3 in CMVEC function in vitro. Luciferase activity assays and RNA immunoprecipitation studies were conducted in vitro to reveal the mechanism of circHIPK3-mediated CMVEC function. Results. circHIPK3 expression was significantly upregulated in hypoxic exosomes (HPC-exos) compared with normoxic exosomes (Nor-exos). Moreover, HPC-exos induced stronger antioxidant effects than Nor-exos. The silencing or overexpression of circHIPK3 changed CMVEC survival under oxidative conditions in vitro. Furthermore, circHIPK3 silencing in HPC-exos abrogated the protective effects of HPC-exos in CMVECs, as shown by increased levels of apoptosis, ROS, MDA, and proapoptotic proteins. circHIPK3 acted as an endogenous miR-29a sponge to sequester and inhibit miR-29a activity, which led to increased IGF-1 expression. The ectopic expression of miR-29a mimicked the effect of circHIPK3 silencing in CMVECs in vitro. Conclusions. circHIPK3 in HPC-exos plays a role in CMVECs under oxidative conditions through miR-29a-mediated IGF-1 expression, leading to a decrease in oxidative stress-induced CMVECs dysfunction. These data suggest that the exosomal circRNA in CMs is a potential target to control CMVECs dysfunction under oxidative conditions.

98 citations


Cites background from "Exosomes secreted by cardiomyocytes..."

  • ...Importantly, HPC enhanced the benefit of CMs-exos in an animal myocardial infarction model and led to an increased proangiogenic effect of exosomes [16]....

    [...]

  • ...Recently, exosomes were found to be released from CMs obtained under ischemic conditions and to promote angiogenesis [16]....

    [...]

Journal ArticleDOI
TL;DR: Exosomes are small membrane-bound vesicles of endocytic origin that are actively secreted as discussed by the authors, and the potential of exosomes as effective communicators of biological signaling in myocardial function has been investigated.
Abstract: Exosomes are small membrane-bound vesicles of endocytic origin that are actively secreted. The potential of exosomes as effective communicators of biological signaling in myocardial function has previously been investigated, and a recent explosion in exosome research not only underscores their significance in cardiac physiology and pathology, but also draws attention to methodological limitations of studying these extracellular vesicles. In this review, we discuss recent advances and challenges in exosome research with an emphasis on scientific innovations in isolation, identification, and characterization methodologies, and we provide a comprehensive summary of web-based resources available in the field. Importantly, we focus on the biology and function of exosomes, highlighting their fundamental role in cardiovascular pathophysiology to further support potential applications of exosomes as biomarkers and therapeutics for cardiovascular diseases.

92 citations

References
More filters
Journal ArticleDOI
TL;DR: Author(s): Writing Group Members; Mozaffarian, Dariush; Benjamin, Emelia J; Go, Alan S; Arnett, Donna K; Blaha, Michael J; Cushman, Mary; Das, Sandeep R; de Ferranti, Sarah; Despres, Jean-Pierre; Fullerton, Heather J; Howard, Virginia J; Huffman, Mark D; Isasi, Carmen R; Jimenez, Monik C; Judd, Suzanne
Abstract: Author(s): Writing Group Members; Mozaffarian, Dariush; Benjamin, Emelia J; Go, Alan S; Arnett, Donna K; Blaha, Michael J; Cushman, Mary; Das, Sandeep R; de Ferranti, Sarah; Despres, Jean-Pierre; Fullerton, Heather J; Howard, Virginia J; Huffman, Mark D; Isasi, Carmen R; Jimenez, Monik C; Judd, Suzanne E; Kissela, Brett M; Lichtman, Judith H; Lisabeth, Lynda D; Liu, Simin; Mackey, Rachel H; Magid, David J; McGuire, Darren K; Mohler, Emile R; Moy, Claudia S; Muntner, Paul; Mussolino, Michael E; Nasir, Khurram; Neumar, Robert W; Nichol, Graham; Palaniappan, Latha; Pandey, Dilip K; Reeves, Mathew J; Rodriguez, Carlos J; Rosamond, Wayne; Sorlie, Paul D; Stein, Joel; Towfighi, Amytis; Turan, Tanya N; Virani, Salim S; Woo, Daniel; Yeh, Robert W; Turner, Melanie B; American Heart Association Statistics Committee; Stroke Statistics Subcommittee

6,181 citations

Journal ArticleDOI
TL;DR: This unit describes different approaches for exosome purification from various sources, and discusses methods to evaluate the purity and homogeneity of the purified exosomes preparations.
Abstract: Exosomes are small membrane vesicles found in cell culture supernatants and in different biological fluids. Exosomes form in a particular population of endosomes, called multivesicular bodies (MVBs), by inward budding into the lumen of the compartment. Upon fusion of MVBs with the plasma membrane, these internal vesicles are secreted. Exosomes possess a defined set of membrane and cytosolic proteins. The physiological function of exosomes is still a matter of debate, but increasing results in various experimental systems suggest their involvement in multiple biological processes. Because both cell-culture supernatants and biological fluids contain different types of lipid membranes, it is critical to perform high-quality exosome purification. This unit describes different approaches for exosome purification from various sources, and discusses methods to evaluate the purity and homogeneity of the purified exosome preparations.

4,492 citations


"Exosomes secreted by cardiomyocytes..." refers methods in this paper

  • ...To evaluate if our isolation protocol excludes large protein aggregates or proteins nonspecifically associated with vesicles, we performed an extra purification step using a sucrose.(18) The presence of the exosomal marker CD63 mainly in the sucrose gradient (Supplementary Figure (SF) 1A), and similar NTA profiles of vesicles obtained with either purification method (SF1B), confirm that the ultracentrifugation procedure is appropriate to isolate...

    [...]

Journal ArticleDOI
19 May 2011-Nature
TL;DR: Preclinical and clinical studies have shown new molecular targets and principles, which may provide avenues for improving the therapeutic benefit from anti-angiogenic strategies.
Abstract: Blood vessels deliver oxygen and nutrients to every part of the body, but also nourish diseases such as cancer. Over the past decade, our understanding of the molecular mechanisms of angiogenesis (blood vessel growth) has increased at an explosive rate and has led to the approval of anti-angiogenic drugs for cancer and eye diseases. So far, hundreds of thousands of patients have benefited from blockers of the angiogenic protein vascular endothelial growth factor, but limited efficacy and resistance remain outstanding problems. Recent preclinical and clinical studies have shown new molecular targets and principles, which may provide avenues for improving the therapeutic benefit from anti-angiogenic strategies.

4,441 citations


"Exosomes secreted by cardiomyocytes..." refers background in this paper

  • ...Angiogenesis, which is the formation of new blood vessels formation from pre-existing vasculature, is a highly controlled mechanism that involves the local breakdown and reorganization of the extracellular matrix (ECM), endothelial cells (ECs) sprouting, migration and adhesion junctions remodelling.(5) It has been shown that signals emitted...

    [...]

Journal ArticleDOI
TL;DR: Exosomes were described as vesicles of endosomal origin secreted from reticulocytes in the 1980s as discussed by the authors, and their biogenesis, their secretion, and their subsequent fate are discussed, as their functions rely on these important processes.
Abstract: In the 1980s, exosomes were described as vesicles of endosomal origin secreted from reticulocytes. Interest increased around these extracellular vesicles, as they appeared to participate in several cellular processes. Exosomes bear proteins, lipids, and RNAs, mediating intercellular communication between different cell types in the body, and thus affecting normal and pathological conditions. Only recently, scientists acknowledged the difficulty of separating exosomes from other types of extracellular vesicles, which precludes a clear attribution of a particular function to the different types of secreted vesicles. To shed light into this complex but expanding field of science, this review focuses on the definition of exosomes and other secreted extracellular vesicles. Their biogenesis, their secretion, and their subsequent fate are discussed, as their functions rely on these important processes.

3,959 citations

01 Jan 2014
TL;DR: The definition of exosomes and other secreted extracellular vesicles, which mediating intercellular communication between different cell types in the body, and thus affecting normal and pathological conditions are focused on.
Abstract: In the 1980s, exosomes were described as vesicles of endosomal origin secreted from reticulocytes. Interest increased around these extracellular vesicles, as they appeared to participate in several cellular processes. Exosomes bear proteins, lipids, and RNAs, mediating intercellular communication between different cell types in the body, and thus affecting normal and pathological conditions. Only recently, scientists acknowledged the difficulty of separating exosomes from other types of extracellular vesicles, which precludes a clear attribution of a particular function to the different types of secreted vesicles. To shed light into this complex but expanding field of science, this review focuses on the definition of exosomes and other secreted extracellular vesicles. Their biogenesis, their secretion, and their subsequent fate are discussed, as their functions rely on these important processes.

3,321 citations


"Exosomes secreted by cardiomyocytes..." refers background in this paper

  • ...mediate intercellular communication under normal and pathological conditions by shuttling a wide range of functional lipids, proteins, mRNAs, and microRNAs (miRs).(9) It has been reported that exosomes play an important role in modulating angiogenesis, in different organs, including the heart....

    [...]

Related Papers (5)