scispace - formally typeset
Search or ask a question

Experiment with a new boosting algorithm

01 Jan 1996-
About: The article was published on 1996-01-01 and is currently open access. It has received 7386 citations till now.
Citations
More filters
Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Book
25 Oct 1999
TL;DR: This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining.
Abstract: Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. *Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects *Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods *Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks-in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

20,196 citations

Journal ArticleDOI
TL;DR: A general gradient descent boosting paradigm is developed for additive expansions based on any fitting criterion, and specific algorithms are presented for least-squares, least absolute deviation, and Huber-M loss functions for regression, and multiclass logistic likelihood for classification.
Abstract: Function estimation/approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest-descent minimization. A general gradient descent “boosting” paradigm is developed for additive expansions based on any fitting criterion.Specific algorithms are presented for least-squares, least absolute deviation, and Huber-M loss functions for regression, and multiclass logistic likelihood for classification. Special enhancements are derived for the particular case where the individual additive components are regression trees, and tools for interpreting such “TreeBoost” models are presented. Gradient boosting of regression trees produces competitive, highly robust, interpretable procedures for both regression and classification, especially appropriate for mining less than clean data. Connections between this approach and the boosting methods of Freund and Shapire and Friedman, Hastie and Tibshirani are discussed.

17,764 citations

Journal ArticleDOI
TL;DR: A new learning algorithm called ELM is proposed for feedforward neural networks (SLFNs) which randomly chooses hidden nodes and analytically determines the output weights of SLFNs which tends to provide good generalization performance at extremely fast learning speed.

10,217 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

References
More filters
Book
15 Oct 1992
TL;DR: A complete guide to the C4.5 system as implemented in C for the UNIX environment, which starts from simple core learning methods and shows how they can be elaborated and extended to deal with typical problems such as missing data and over hitting.
Abstract: From the Publisher: Classifier systems play a major role in machine learning and knowledge-based systems, and Ross Quinlan's work on ID3 and C4.5 is widely acknowledged to have made some of the most significant contributions to their development. This book is a complete guide to the C4.5 system as implemented in C for the UNIX environment. It contains a comprehensive guide to the system's use , the source code (about 8,800 lines), and implementation notes. The source code and sample datasets are also available on a 3.5-inch floppy diskette for a Sun workstation. C4.5 starts with large sets of cases belonging to known classes. The cases, described by any mixture of nominal and numeric properties, are scrutinized for patterns that allow the classes to be reliably discriminated. These patterns are then expressed as models, in the form of decision trees or sets of if-then rules, that can be used to classify new cases, with emphasis on making the models understandable as well as accurate. The system has been applied successfully to tasks involving tens of thousands of cases described by hundreds of properties. The book starts from simple core learning methods and shows how they can be elaborated and extended to deal with typical problems such as missing data and over hitting. Advantages and disadvantages of the C4.5 approach are discussed and illustrated with several case studies. This book and software should be of interest to developers of classification-based intelligent systems and to students in machine learning and expert systems courses.

21,674 citations

01 Jan 1994
TL;DR: In his new book, C4.5: Programs for Machine Learning, Quinlan has put together a definitive, much needed description of his complete system, including the latest developments, which will be a welcome addition to the library of many researchers and students.
Abstract: Algorithms for constructing decision trees are among the most well known and widely used of all machine learning methods. Among decision tree algorithms, J. Ross Quinlan's ID3 and its successor, C4.5, are probably the most popular in the machine learning community. These algorithms and variations on them have been the subject of numerous research papers since Quinlan introduced ID3. Until recently, most researchers looking for an introduction to decision trees turned to Quinlan's seminal 1986 Machine Learning journal article [Quinlan, 1986]. In his new book, C4.5: Programs for Machine Learning, Quinlan has put together a definitive, much needed description of his complete system, including the latest developments. As such, this book will be a welcome addition to the library of many researchers and students.

8,046 citations

Book ChapterDOI
William W. Cohen1
09 Jul 1995
TL;DR: This paper evaluates the recently-proposed rule learning algorithm IREP on a large and diverse collection of benchmark problems, and proposes a number of modifications resulting in an algorithm RIPPERk that is very competitive with C4.5 and C 4.5rules with respect to error rates, but much more efficient on large samples.
Abstract: Many existing rule learning systems are computationally expensive on large noisy datasets. In this paper we evaluate the recently-proposed rule learning algorithm IREP on a large and diverse collection of benchmark problems. We show that while IREP is extremely efficient, it frequently gives error rates higher than those of C4.5 and C4.5rules. We then propose a number of modifications resulting in an algorithm RIPPERk that is very competitive with C4.5rules with respect to error rates, but much more efficient on large samples. RIPPERk obtains error rates lower than or equivalent to C4.5rules on 22 of 37 benchmark problems, scales nearly linearly with the number of training examples, and can efficiently process noisy datasets containing hundreds of thousands of examples.

4,081 citations

Journal ArticleDOI
Yoav Freund1
TL;DR: An algorithm for improving the accuracy of algorithms for learning binary concepts by combining a large number of hypotheses, each of which is generated by training the given learning algorithm on a different set of examples, is presented.
Abstract: We present an algorithm for improving the accuracy of algorithms for learning binary concepts. The improvement is achieved by combining a large number of hypotheses, each of which is generated by training the given learning algorithm on a different set of examples. Our algorithm is based on ideas presented by Schapire and represents an improvement over his results, The analysis of our algorithm provides general upper bounds on the resources required for learning in Valiant′s polynomial PAC learning framework, which are the best general upper bounds known today. We show that the number of hypotheses that are combined by our algorithm is the smallest number possible. Other outcomes of our analysis are results regarding the representational power of threshold circuits, the relation between learnability and compression, and a method for parallelizing PAC learning algorithms. We provide extensions of our algorithms to cases in which the concepts are not binary and to the case where the accuracy of the learning algorithm depends on the distribution of the instances.

1,632 citations

Proceedings Article
04 Aug 1996
TL;DR: Results of applying Breiman's bagging and Freund and Schapire's boosting to a system that learns decision trees and testing on a representative collection of datasets show boosting shows the greater benefit.
Abstract: Breiman's bagging and Freund and Schapire's boosting are recent methods for improving the predictive power of classifier learning systems Both form a set of classifiers that are combined by voting, bagging by generating replicated bootstrap samples of the data, and boosting by adjusting the weights of training instances This paper reports results of applying both techniques to a system that learns decision trees and testing on a representative collection of datasets While both approaches substantially improve predictive accuracy, boosting shows the greater benefit On the other hand, boosting also produces severe degradation on some datasets A small change to the way that boosting combines the votes of learned classifiers reduces this downside and also leads to slightly better results on most of the datasets considered

1,597 citations