scispace - formally typeset
Search or ask a question
Book ChapterDOI

Experimental Contribution to the Design of a Microprocessor Cooling System by Thermoelectric Module

TL;DR: In this paper, experiments are performed to investigate the coupling of thermoelectric module and rectangular fin heat sink subjected to an impacting air jet for cooling desktop micro-processors.
Abstract: In this study, experiments are performed to investigate the coupling of thermoelectric module and rectangular fin heat sink subjected to an impacting air jet for cooling desktop microprocessors. A controlled thermoelectric test system was conceived and performed for this purpose. The control of the thermoelectric forced air combined cooling system was designed on the basis of electronic Arduino card. The proposed thermoelectric forced convection cooling combined system was compared with the conventional forced air cooling technique. Three electrical powers for the heat source (CPU) were adopted and compared in this experimental study: 60, 87 and 95 W. Performance of thermoelectric cooling module with three preset temperature was experimentally investigated below diverse working conditions. Effects of thermoelectric input current and air jet velocity on the case temperature (Tcase) were analysed. The thermoelectric cooler had a considerable effect on the cooling of the CPU. However, the consumption of the energy was also augmented. Experimental results indicated that the cooling effect improved with increasing of thermoelectric operating current. However, Temperature of the heat source increased with high power input of the CPU. For a power input of 95 W of the CPU, the Tcase was maintained under 50 °C with thermoelectric input power of 45 and 5.8 W for the fan, giving improvement around 15% comparing to conventional forced air cooling.
References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors investigated the thermal performance of a thermoelectric water-cooling device for electronic equipment and developed a novel analytical model of thermal analogy network to predict the thermal capability.

97 citations

Journal ArticleDOI
TL;DR: In this paper, a thermoelectric test system has been designed and constructed, with typical test results presented for thermal cooling and micro-power generation when the computer is executing a number of different applications.
Abstract: Thermoelectric cooling and micro-power generation from waste heat within a standard desktop computer has been demonstrated. A thermoelectric test system has been designed and constructed, with typical test results presented for thermoelectric cooling and micro-power generation when the computer is executing a number of different applications. A thermoelectric module, operating as a heat pump, can lower the operating temperature of the computer's microprocessor and graphics processor to temperatures below ambient conditions. A small amount of electrical power, typically in the micro-watt or milli-watt range, can be generated by a thermoelectric module attached to the outside of the computer's standard heat sink assembly, when a secondary heat sink is attached to the other side of the thermoelectric module. Maximum electrical power can be generated by the thermoelectric module when a water cooled heat sink is used as the secondary heat sink, as this produces the greatest temperature difference between both sides of the module.

63 citations