scispace - formally typeset
Search or ask a question
Book•

Experimental Designs, 2nd Edition

About: The article was published on 1950-01-01 and is currently open access. It has received 5820 citations till now.
Citations
More filters
Journal Article•DOI•
TL;DR: This chapter discusses design and analysis of single-Factor Experiments: Completely Randomized Design and Factorial Experiments in which Some of the Interactions are Confounded.

24,665 citations

Journal Article•DOI•
Donald B. Rubin1•
TL;DR: A discussion of matching, randomization, random sampling, and other methods of controlling extraneous variation is presented in this paper, where the objective is to specify the benefits of randomization in estimating causal effects of treatments.
Abstract: A discussion of matching, randomization, random sampling, and other methods of controlling extraneous variation is presented. The objective is to specify the benefits of randomization in estimating causal effects of treatments. The basic conclusion is that randomization should be employed whenever possible but that the use of carefully controlled nonrandomized data to estimate causal effects is a reasonable and necessary procedure in many cases. Recent psychological and educational literature has included extensive criticism of the use of nonrandomized studies to estimate causal effects of treatments (e.g., Campbell & Erlebacher, 1970). The implication in much of this literature is that only properly randomized experiments can lead to useful estimates of causal effects. If taken as applying to all fields of study, this position is untenable. Since the extensive use of randomized experiments is limited to the last half century,8 and in fact is not used in much scientific investigation today,4 one is led to the conclusion that most scientific "truths" have been established without using randomized experiments. In addition, most of us successfully determine the causal effects of many of our everyday actions, even interpersonal behaviors, without the benefit of randomization. Even if the position that causal effects of treatments can only be well established from randomized experiments is taken as applying only to the social sciences in which

8,377 citations

Journal Article•DOI•
TL;DR: Suggestions are offered to statisticians and editors of ecological journals as to how ecologists' under- standing of experimental design and statistics might be improved.
Abstract: Pseudoreplication is defined. as the use of inferential statistics to test for treatment effects with data from experiments where either treatments are not replicated (though samples may be) or replicates are not statistically independent. In ANOVA terminology, it is the testing for treatment effects with an error term inappropriate to the hypothesis being considered. Scrutiny of 176 experi- mental studies published between 1960 and the present revealed that pseudoreplication occurred in 27% of them, or 48% of all such studies that applied inferential statistics. The incidence of pseudo- replication is especially high in studies of marine benthos and small mammals. The critical features of controlled experimentation are reviewed. Nondemonic intrusion is defined as the impingement of chance events on an experiment in progress. As a safeguard against both it and preexisting gradients, interspersion of treatments is argued to be an obligatory feature of good design. Especially in small experiments, adequate interspersion can sometimes be assured only by dispensing with strict random- ization procedures. Comprehension of this conflict between interspersion and randomization is aided by distinguishing pre-layout (or conventional) and layout-specifit alpha (probability of type I error). Suggestions are offered to statisticians and editors of ecological j oumals as to how ecologists' under- standing of experimental design and statistics might be improved.

7,808 citations

Journal Article•DOI•
Fariborz Damanpour1•
TL;DR: A meta-analysis of the relationships between organizational innovation and 13 potential determinants resulted in statistically significant associations for specialization, functional differencing, and functional differences as mentioned in this paper. But, the authors did not consider the role of organizational innovation in organizational innovation.
Abstract: A meta-analysis of the relationships between organizational innovation and 13 of its potential determinants resulted in statistically significant associations for specialization, functional differe...

6,743 citations

Journal Article•DOI•
TL;DR: The problem of making a combined estimate has been discussed previously by Cochran and Yates and Cochran (1937) for agricultural experiments, and by Bliss (1952) for bioassays in different laboratories as discussed by the authors.
Abstract: When we are trying to make the best estimate of some quantity A that is available from the research conducted to date, the problem of combining results from different experiments is encountered. The problem is often troublesome, particularly if the individual estimates were made by different workers using different procedures. This paper discusses one of the simpler aspects of the problem, in which there is sufficient uniformity of experimental methods so that the ith experiment provides an estimate xi of u, and an estimate si of the standard error of xi . The experiments may be, for example, determinations of a physical or astronomical constant by different scientists, or bioassays carried out in different laboratories, or agricultural field experiments laid out in different parts of a region. The quantity xi may be a simple mean of the observations, as in a physical determination, or the difference between the means of two treatments, as in a comparative experiment, or a median lethal dose, or a regression coefficient. The problem of making a combined estimate has been discussed previously by Cochran (1937) and Yates and Cochran (1938) for agricultural experiments, and by Bliss (1952) for bioassays in different laboratories. The last two papers give recommendations for the practical worker. My purposes in treating the subject again are to discuss it in more general terms, to take account of some recent theoretical research, and, I hope, to bring the practical recommendations to the attention of some biologists who are not acquainted with the previous papers. The basic issue with which this paper deals is as follows. The simplest method of combining estimates made in a number of different experiments is to take the arithmetic mean of the estimates. If, however, the experiments vary in size, or appear to be of different precision, the investigator may wonder whether some kind of weighted meani would be more precise. This paper gives recommendations about the kinds of weighted mean that are appropriate, the situations in which they

4,335 citations