scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Experimental Evaluation of the Lubrication Performance of MoS2/CNT Nanofluid for Minimal Quantity Lubrication in Ni-based Alloy Grinding

01 Dec 2015-International Journal of Machine Tools & Manufacture (Pergamon)-Vol. 99, pp 19-33
TL;DR: In this article, a hybrid nanofluid consisting of MoS2 nanoparticles with good lubrication effect and CNTs with high heat conductivity coefficient is investigated for Ni-based alloy grinding.
Abstract: A nanofluid minimum quantity lubrication with addition of one kind of nanoparticle has several limitations, such as grinding of difficult-to-cutting materials Hybrid nanoparticles integrate the properties of two or more kinds of nanoparticles, thus having better lubrication and heat transfer performances than single nanoparticle additives However, the use of hybrid nanoparticles in nanofluid minimum quantity lubrication grinding has not been reported This study aims to determine whether hybrid nanoparticles have better lubrication performance than pure nanoparticle A hybrid nanofluid consisting of MoS2 nanoparticles with good lubrication effect and CNTs with high heat conductivity coefficient is investigated The effects of the hybrid nanofluid on grinding force, coefficient of friction, and workpiece surface quality for Ni-based alloy grinding are analyzed Results show that the MoS2/CNT hybrid nanoparticles achieve better lubrication effect than single nanoparticles The optimal MoS2/CNT mixing ratio and nanofluid concentration are 2:1 and 6 wt%, respectively
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the critical maximum undeformed equivalent chip thickness for ductile-brittle transition (DBhmax-e) of zirconia ceramics under different lubrication conditions was investigated.
Abstract: This study investigates the critical maximum undeformed equivalent chip thickness for ductile-brittle transition (DBhmax-e) of zirconia ceramics under different lubrication conditions. A DBhmax-e model is developed through geometry and kinematics analyses of ductile-mode grinding. Result shows that DBhmax-e decreases with increasing friction coefficient (μ). An experimental investigation is then conducted to validate the model and determine the effect of dry lubrication, minimum quantity lubrication (MQL), and nanoparticle jet minimum quantity lubrication (NJMQL) conditions on DBhmax-e. According to different formation mechanisms of debris, the grinding behavior of zirconia ceramics is categorized into elastic sliding friction, plastic removal, powder removal, and brittle removal. Grinding forces per unit undeformed chip thickness (Fn/h and Ft/h) are obtained. The lubrication condition affects the normal force and ultimately influences the resultant force on workpiece. In comparison with dry grinding (DBhmax-e = 0.8 μm), MQL and NJMQL grinding processes increase DBhmax-e by 0.99 and 1.79 μm respectively; this finding is similar to model result. The theoretical model is then assessed by different volume fractions of nanofluids under NJMQL condition with an average percentage error of less than 8.6%.

359 citations

Journal ArticleDOI
TL;DR: In this article, the dispersing mechanism of different surfactants and evaluated the dispersion stability and tribological performances of PPO-based CNT nanofluids were analyzed. And different experimental evaluations confirm that APE-10 is the optimal dispersant of CNT nanoparticles.

353 citations

Journal ArticleDOI
TL;DR: A comprehensive literature on synthesis of hybrid nanoparticles, hybrid nanofluid and thermophysical properties of hybrid nano-fluids has been compiled and reviewed in this article, where the challenges and future trends in the application of hybrid Nanofluids in heat transfer applications are discussed.

300 citations

Journal ArticleDOI
TL;DR: In this paper, an improved theoretical force model that considers material removal and stacking mechanisms is presented. But the combined effect of material removal, stacking, and plastic stacking on surface grinding force model has not been investigated.
Abstract: Numerous researchers have developed theoretical and experimental approaches to force prediction in surface grinding under dry conditions. Nevertheless, the combined effect of material removal and plastic stacking on grinding force model has not been investigated. In addition, predominant lubricating conditions, such as flood, minimum quantity lubrication, and nanofluid minimum quantity lubrication, have not been considered in existing force models. This work presents an improved theoretical force model that considers material-removal and plastic-stacking mechanisms. Grain states, including cutting and ploughing, are determined by cutting efficiency (β). The influence of lubricating conditions is also considered in the proposed force model. Simulation is performed to obtain the cutting depth (ag) of each “dynamic active grain.” Parameter β is introduced to represent the plastic-stacking rate and determine the force algorithms of each grain. The aggregate force is derived through the synthesis of each single-grain force. Finally, pilot experiments are conducted to test the theoretical model. Findings show that the model's predictions are consistent with the experimental results, with average errors of 4.19% and 4.31% for the normal and tangential force components, respectively.

289 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of nanofluid minimum quantity lubrication (MQL) on the temperatures in surface grinding is presented and discussed, and a mathematical model for convective heat transfer coefficient is then developed based on the boundary layer theories.

262 citations

References
More filters
Journal ArticleDOI
26 Jul 2002-Science
TL;DR: At pH less than 5, the absorption and emission spectra of individual nanotubes show evidence of band gap–selective protonation of the side walls of the tube, which is readily reversed by treatment with base or ultraviolet light.
Abstract: Fluorescence has been observed directly across the band gap of semiconducting carbon nanotubes. We obtained individual nanotubes, each encased in a cylindrical micelle, by ultrasonically agitating an aqueous dispersion of raw single-walled carbon nanotubes in sodium dodecyl sulfate and then centrifuging to remove tube bundles, ropes, and residual catalyst. Aggregation of nanotubes into bundles otherwise quenches the fluorescence through interactions with metallic tubes and substantially broadens the absorption spectra. At pH less than 5, the absorption and emission spectra of individual nanotubes show evidence of band gap-selective protonation of the side walls of the tube. This protonation is readily reversed by treatment with base or ultraviolet light.

3,635 citations

Book
01 Jan 1959
TL;DR: In this article, the authors present a list of common distributions of probability and distribution of likelihood for Bayesian models. But they do not discuss the relation between distributions and normal models.
Abstract: 1. Probability and Distributions. 2. Multivariate Distributions. 3. Some Special Distributions. 4. Some Elementary Statistical Inferences 5. Consistency and Limiting Distributions 6. Maximum Likelihood Methods. 7. Sufficiency. 8. Optimal Tests of Hypotheses. 9. Inferences about Normal Models. 10. Nonparametric and Robust Statistics. 11. Bayesian Statistics. Appendix A. Mathematical Comments Appendix B. R-Functions. Appendix C. Tables of Distributions Appendix D. List of Common Distributions Appendix E. References Appendix F. Answers to Selected Exercises Index

3,047 citations

Journal ArticleDOI
TL;DR: In this article, the authors focused on Inconel 718 and recent work and advances concerning machining of this material are presented, and some solutions to reduce the use of coolants are explored, and different coating techniques to enable a move towards dry machining are examined.
Abstract: The increasing attention to the environmental and health impacts of industry activities by governmental regulation and by the growing awareness in society is forcing manufacturers to reduce the use of lubricants. In the machining of aeronautical materials, classified as difficult-to-machine materials, the consumption of cooling lubricant during the machining operations is very important. The associated costs of coolant acquisition, use, disposal and washing the machined components are significant, up to four times the cost of consumable tooling used in the cutting operations. To reduce the costs of production and to make the processes environmentally safe, the goal of the aeronautical manufacturers is to move toward dry cutting by eliminating or minimising cutting fluids. This goal can be achieved by a clear understanding of the cutting fluid function in machining operations, in particular in high speed cutting, and by the development and the use of new materials for tools and coatings. High speed cutting is another important aspect of advanced manufacturing technology introduced to achieve high productivity and to save machining cost. The combination of high speed cutting and dry cutting for difficult-to-cut aerospace materials is the growing challenge to deal with the economic, environmental and health aspects of machining. In this paper, attention is focussed on Inconel 718 and recent work and advances concerning machining of this material are presented. In addition, some solutions to reduce the use of coolants are explored, and different coating techniques to enable a move towards dry machining are examined.

598 citations

Journal ArticleDOI
TL;DR: In this article, high fluorescent cysteine-capped CdTe/CdS core-shell nanowires were successfully synthesized by reacting CdCl2 with NaHTe in aqueous solution under refluxing at 100°C for 140min.
Abstract: Highly fluorescent cysteine-capped CdTe/CdS core–shell nanowires were successfully synthesized by reacting CdCl2 with NaHTe in aqueous solution under refluxing at 100 °C for 140 min. On increasing the reaction time from 10 to 140 min, CdTe/CdS nanocrystals gradually grew into nanorods and eventually completely evolved into nanowires. The nanowires have amino and carboxyl functional groups on their surfaces and can be well dispersed in aqueous solution. The as-prepared CdTe/CdS nanowires show a fluorescence quantum yield (QY) of 7.25 % due to the unique nature of cysteine and the formation of a CdS shell on the surface of the CdTe core, they have a narrower diameter distribution (d = ~5 nm) and a length in the range of 175–275 nm, and their aspect ratio is between 1/35 and 1/55.

474 citations

Journal ArticleDOI
TL;DR: In this paper, an overview of analytical methods to calculate grinding temperatures and their effect on thermal damage is presented, which consists of modeling the grinding zone as a heat source which moves along the workpiece surface.

461 citations

Related Papers (5)