scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel

TL;DR: In this article, the authors performed an experimental investigation and a successive statistical optimization of the parameters of the selective laser melting process of the 18Ni300 maraging steel and found that the best part properties were produced with the laser power bigger than 90 W and the velocity smaller than 220 mm/s.
Abstract: Selective Laser Melting (SLM) is an Additive Manufacturing process (AM) that built parts from powder using a layer-by-layer deposition technique. The control of the parameters that influence the melting and the amount of energy density involved in the process is paramount in order to get valuable parts. The objective of this paper is to perform an experimental investigation and a successive statistical optimization of the parameters of the selective laser melting process of the 18Ni300 maraging steel. The experimental investigation involved the study of the microstructure, the mechanical and surface properties of the laser maraging powder. The outcomes of experimental study demonstrated that the hardness, the mechanical strength and the surface roughness correlated positively to the part density. Parts with relative density higher than 99% had a very low porosity that presented closed and regular shaped pores. The statistical optimization determined that the best part properties were produced with the laser power bigger than 90 W and the velocity smaller than 220 mm/s.
Citations
More filters
Journal ArticleDOI
TL;DR: A review of the emerging research on additive manufacturing of metallic materials is provided in this article, which provides a comprehensive overview of the physical processes and the underlying science of metallurgical structure and properties of the deposited parts.

4,192 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out in this paper, where the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed.
Abstract: Freedom of design, mass customisation, waste minimisation and the ability to manufacture complex structures, as well as fast prototyping, are the main benefits of additive manufacturing (AM) or 3D printing. A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out. In particular, the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed. The current state of materials development, including metal alloys, polymer composites, ceramics and concrete, was presented. In addition, this paper discussed the main processing challenges with void formation, anisotropic behaviour, the limitation of computer design and layer-by-layer appearance. Overall, this paper gives an overview of 3D printing, including a survey on its benefits and drawbacks as a benchmark for future research and development.

4,159 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the complex relationship between additive manufacturing processes, microstructure and resulting properties for metals, and typical microstructures for additively manufactured steel, aluminium and titanium are presented.

2,837 citations

Journal ArticleDOI
TL;DR: In this article, the service properties of AM parts are described, including physical, mechanical, optical and electrical properties, and an additive manufacturability index is proposed, based on the seven categories of ISO/ASTM AM categories.

636 citations

Journal ArticleDOI
TL;DR: In this article, the mechanical properties of Ti-6Al-4V samples produced by selective laser melting (SLM) and electron beam melting (EBM) were evaluated for hardness, tensile, and fatigue tests.

620 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the development of the microstructure of the Ti-6Al-4V alloy processed by selective laser melting (SLM) was studied by light optical microscopy.

2,201 citations

Journal ArticleDOI
TL;DR: In this paper, a mixture of different types of particles (Fe, Ni, Cu and Fe3P) specially developed for selective laser sintering (SLS) is described.

1,342 citations

Journal ArticleDOI
J.D. Hunt1
TL;DR: In this article, an analysis for the growth of equiaxed grains ahead of the columnar front during directional solidification is presented, and the model considers both single-phase and eutectic growth.

1,062 citations

Book
01 Jan 1995
TL;DR: A comprehensive guide to compositions, properties, performance, and selection of cast irons, carbon and low-alloy steels, tool steels and stainless steels is presented in this article.
Abstract: A comprehensive guide to compositions, properties, performance, and selection of cast irons, carbon and low-alloy steels, tool steels, stainless steels, and superalloys. Contains 1,328 illustrations (photographs, charts, and graphs). More than 500 tables provide extensive data for alloy designations, compositions, and mechanical and physical properties. This handbook is the best single-volume reference work on the properties and selection of ferrous metals and alloys. It features contributions from more than 200 technical experts.

963 citations

Journal ArticleDOI
TL;DR: In this paper, the microstructure, high cycle fatigue (HCF), and fracture behavior of additive manufactured AlSi10Mg samples are investigated, and the results were analyzed statistically by design of experiments, correlation analysis, and marginal means plots.

903 citations