scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Experimental stress state-dependent void nucleation behavior for advanced high strength steels

TL;DR: In this article, the influence of microstructure and stress state, as defined by the stress triaxiality and Lode parameter, on micro-void nucleation was evaluated experimentally for two 800MPa Advanced High Strength Steels (AHSS), one a Complex-Phase CP800 alloy, with a ferritic-bainitic micro-structure, and the other a Dual-Phase DP780 ferriticmartensitic steel.
About: This article is published in International Journal of Mechanical Sciences.The article was published on 2020-08-01. It has received 26 citations till now. The article focuses on the topics: Nucleation & Plane stress.
Citations
More filters
01 Jan 2001
TL;DR: In this paper, a model for the axisymmetric growth and coalescence of small internal voids in elastoplastic solids is proposed and assessed using void cell computations.
Abstract: A model for the axisymmetric growth and coalescence of small internal voids in elastoplastic solids is proposed and assessed using void cell computations. Two contributions existing in the literature have been integrated into the enhanced model. The first is the model of Gologanu-Leblond-Devaux, extending the Gurson model to void shape effects. The second is the approach of Thomason for the onset of void coalescence. Each of these has been extended heuristically to account for strain hardening. In addition, a micromechanically-based simple constitutive model for the void coalescence stage is proposed to supplement the criterion for the onset of coalescence. The fully enhanced Gurson model depends on the flow properties of the material and the dimensional ratios of the void-cell representative volume element. Phenomenological parameters such as critical porosities are not employed in the enhanced model. It incorporates the effect of void shape, relative void spacing, strain hardening, and porosity. The effect of the relative void spacing on void coalescence, which has not yet been carefully addressed in the literature. has received special attention. Using cell model computations, accurate predictions through final fracture have been obtained for a wide range of porosity, void spacing, initial void shape, strain hardening, and stress triaxiality. These predictions have been used to assess the enhanced model. (C) 2000 Elsevier Science Ltd. All rights reserved.

519 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the mechanisms leading to fracture of aluminum alloy AA2024-T3 under shear loading via X-ray synchrotron laminography, and proposed a fracture mechanism based on these observations and assessed with a representative volume element simulation, pointing towards the formation of a shear localization band during the final loading step.

22 citations

Journal ArticleDOI
TL;DR: In this paper , the authors directly captured, classified, and evaluated 3D particle debonding and fracture behavior in a H-charged 7075 Al alloy throughout the entire tensile deformation using synchrotron X-ray tomography and microstructural feature tracking techniques.

11 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the influence of microstructure on micro-void evolution during the edge stretching of ferritic-bainitic complex-phase (CP) steels and developed a micromechanics-based fracture model to predict edge failure for both reamed and sheared holes.
Abstract: Sheared edge failure is one of the major problems associated with the forming of advanced high strength steels (AHSS) such as dual-phase (DP) steels. To improve the performance of AHSS in industrial forming operations, ferritic-bainitic complex-phase (CP) steels have been developed and are gaining attention in academia as well as industry. The present work aims to investigate the influence of microstructure on micro-void (damage) evolution during the edge stretching of CP800 and DP780 steels and develop a micromechanics-based fracture model to predict edge failure for both reamed and sheared holes. Three-dimensional damage histories were obtained using x-ray microtomography on a series of hole tension specimens interrupted at different strain levels. These experiments considered a tensile specimen with a sheared hole at the center of specimen (sheared edge condition) or reamed (ideal edge condition). Void damage measurements, such as void area fraction, number of voids, void diameter, and void aspect ratio, were conducted and the results are compared to the reamed specimens to isolate the sheared edge effect on damage. The void measurements were used to implement a stress-state dependent model for nucleation, and coupled with the Ragab (2004) model for void growth and the Benzerga and Leblond (2014) model for void coalescence to develop a damage-based material model. Higher damage accumulation was observed behind the sheared edge in comparison the reamed edge at a given strain for both materials considered. An uncoupled anisotropic damage-based fracture model was formulated in a LS-DYNA user-defined material subroutine. As an alternative to computationally expensive multi-stage sheared edge stretching simulations, the measured strain-distribution of the sheared edge was mapped into a finite-element model to predict sheared edge failure. The proposed model was validated for the hole tension testing simulations and found to predict failure accurately for both the CP800 and DP780 for both the edge conditions.

10 citations

References
More filters
01 Jan 2004
TL;DR: ImageJ is an open source Java-written program that is used for many imaging applications, including those that that span the gamut from skin analysis to neuroscience, and can read most of the widely used and significant formats used in biomedical images.
Abstract: Wayne Rasband of NIH has created ImageJ, an open source Java-written program that is now at version 1.31 and is used for many imaging applications, including those that that span the gamut from skin analysis to neuroscience. ImageJ is in the public domain and runs on any operating system (OS). ImageJ is easy to use and can do many imaging manipulations. A very large and knowledgeable group makes up the user community for ImageJ. Topics covered are imaging abilities; cross platform; image formats support as of June 2004; extensions, including macros and plug-ins; and imaging library. NIH reports tens of thousands of downloads at a rate of about 24,000 per month currently. ImageJ can read most of the widely used and significant formats used in biomedical images. Manipulations supported are read/write of image files and operations on separate pixels, image regions, entire images, and volumes (stacks in ImageJ). Basic operations supported include convolution, edge detection, Fourier transform, histogram and particle analyses, editing and color manipulation, and more advanced operations, as well as visualization. For assistance in using ImageJ, users e-mail each other, and the user base is highly knowledgeable and will answer requests on the mailing list. A thorough manual with many examples and illustrations has been written by Tony Collins of the Wright Cell Imaging Facility at Toronto Western Research Institute and is available, along with other listed resources, via the Web.

12,060 citations

Journal ArticleDOI
TL;DR: In this article, a variational principle is established to characterize the flow field in an elastically rigid and incompressible plastic material containing an internal void or voids, and an approximate Rayleigh-Ritz procedure is developed and applied to the enlargement of an isolated spherical void in a nonhardening material.
Abstract: The fracture of ductile solids has frequently been observed to result from the large growth and coalescence of microscopic voids, a process enhanced by the superposition of hydrostatic tensile stresses on a plastic deformation field. The ductile growth of voids is treated here as a problem in continuum plasticity. First, a variational principle is established to characterize the flow field in an elastically rigid and incompressible plastic material containing an internal void or voids, and subjected to a remotely uniform stress and strain rate field. Then an approximate Rayleigh-Ritz procedure is developed and applied to the enlargement of an isolated spherical void in a nonhardening material. Growth is studied in some detail for the case of a remote tensile extension field with superposed hydrostatic stresses. The volume changing contribution to void growth is found to overwhelm the shape changing part when the mean remote normal stress is large, so that growth is essentially spherical. Further, it is found that for any remote strain rate field, the void enlargement rate is amplified over the remote strain rate by a factor rising exponentially with the ratio of mean normal stress to yield stress. Some related results are discussed, including the long cylindrical void considered by F.A. McClintock (1968, J. appl. Mech . 35 , 363), and an approximate relation is given to describe growth of a spherical void in a general remote field. The results suggest a rapidly decreasing fracture ductility with increasing hydrostatic tension.

4,156 citations

Journal ArticleDOI
TL;DR: In this article, a model of dynamic crack growth is presented for a plane strain block with an initial central crack subject to tensile loading, where crack branching emerges as a natural outcome of the initial-boundary value problem solution, without any ad hoc assumption regarding branching criteria.
Abstract: Dynamic crack growth is analysed numerically for a plane strain block with an initial central crack subject to tensile loading. The continuum is characterized by a material constitutive law that relates stress and strain, and by a relation between the tractions and displacement jumps across a specified set of cohesive surfaces. The material constitutive relation is that of an isotropic hyperelastic solid. The cohesive surface constitutive relation allows for the creation of new free surface and dimensional considerations introduce a characteristic length into the formulation. Full transient analyses are carried out. Crack branching emerges as a natural outcome of the initial-boundary value problem solution, without any ad hoc assumption regarding branching criteria. Coarse mesh calculations are used to explore various qualitative features such as the effect of impact velocity on crack branching, and the effect of an inhomogeneity in strength, as in crack growth along or up to an interface. The effect of cohesive surface orientation on crack path is also explored, and for a range of orientations zigzag crack growth precedes crack branching. Finer mesh calculations are carried out where crack growth is confined to the initial crack plane. The crack accelerates and then grows at a constant speed that, for high impact velocities, can exceed the Rayleigh wave speed. This is due to the finite strength of the cohesive surfaces. A fine mesh calculation is also carried out where the path of crack growth is not constrained. The crack speed reaches about 45% of the Rayleigh wave speed, then the crack speed begins to oscillate and crack branching at an angle of about 29° from the initial crack plane occurs. The numerical results are at least qualitatively in accord with a wide variety of experimental observations on fast crack growth in brittle solids.

2,233 citations

Alan Needleman1
01 Jan 1987
TL;DR: In this article, a boundary value problem simulating a periodic array of rigid spherical inclusions in an isotropically hardening elastic-viscoplastic matrix is analyzed and the effect of the triaxiality of the imposed stress state on nucleation is studied and the numerical results are related to the description of void nucleation within a phenomenological constitutive framework.
Abstract: A cohesive zone model, taking full account of finite geometry changes, is used to provide a unified framework for describing the process of void nucleation from in­itial debonding through complete decohesion. A boundary value problem simulating a periodic array of rigid spherical inclusions in an isotropically hardening elastic-viscoplastic matrix is analyzed. Dimensional considerations introduce a characteristic length into the formulation and, depending on the ratio of this characteristic length to the inclusion radius, decohesion occurs either in a "ductile" or "brittle" manner. The effect of the triaxiality of the imposed stress state on nucleation is studied and the numerical results are related to the description of void nucleation within a phenomenological constitutive framework for progressively cavitating solids. 1 Introduction The nucleation of voids from inclusions and second phase particles plays a key role in limiting the ductility and toughness of plastically deforming solids, including structural metals and composites. The voids initiate either by inclusion cracking or by decohesion of the interface, but here attention is confined to consideration of void nucleation by interfacial decohesion. Theoretical descriptions of void nucleation from second phase particles have been developed based on both continuum and dislocation concepts, e.g., Brown and Stobbs (1971), Argon et al. (1975), Chang and Asaro (1978), Goods and Brown (1979), and Fisher and Gurland (1981). These models have focussed on critical conditions for separation and have not explicitly treated propagation of the debonded zone along the interface. Interface debonding problems have been treated within the context of continuum linear elasticity theory; for example, the problem of separation of a circular cylindrical in­clusion from a matrix has been solved for an interface that supports neither shearing nor tensile normal tractions (Keer et al., 1973). The growth of a void at a rigid inclusion has been analyzed by Taya and Patterson (1982), for a nonlinear viscous solid subject to overall uniaxial straining and with the strength of the interface neglected. The model introduced in this investigation is aimed at describing the evolution from initial debonding through com­plete separation and subsequent void growth within a unified framework. The formulation is a purely continuum one using a cohesive zone (Barenblatt, 1962; Dugdale, 1960) type model for the interface but with full account taken of finite geometry

1,848 citations