scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Experiments and Modeling of Dual-Fuel HCCI and PCCI Combustion Using In-Cylinder Fuel Blending

02 Nov 2009-SAE International journal of engines (SAE International)-Vol. 2, Iss: 2, pp 24-39
About: This article is published in SAE International journal of engines.The article was published on 2009-11-02. It has received 533 citations till now. The article focuses on the topics: Exhaust gas recirculation & Homogeneous charge compression ignition.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a dual fuel engine combustion technology called Reactivity Controlled Compression Ignition (RCCI) is highlighted, since it provides more efficient control over the combustion process and has the capability to lower fuel use and pollutant emissions.

889 citations

Journal ArticleDOI
TL;DR: In this article, a fuel reactivity controlled compression ignition (RCCI) concept is demonstrated as a promising method to achieve high efficiency, which is demonstrated in a heavy-duty test engine over a range of loads.
Abstract: A fuel reactivity controlled compression ignition (RCCI) concept is demonstrated as a promising method to achieve high efficiency – clean combustion. Engine experiments were performed in a heavy-duty test engine over a range of loads. Additionally, RCCI engine experiments were compared to conventional diesel engine experiments. Detailed computational fluid dynamics modelling was then used to explain the experimentally observed trends. Specifically, it was found that RCCI combustion is capable of operating over a wide range of engine loads with near zero levels of NOx and soot, acceptable pressure rise rate and ringing intensity, and very high indicated efficiency. For example, a peak gross indicated efficiency of 56 per cent was observed at 9.3 bar indicated mean effective pressure and 1300 rev/min. The comparison between RCCI and conventional diesel showed a reduction in NOx by three orders of magnitude, a reduction in soot by a factor of six, and an increase in gross indicated efficiency of 16.4 per cen...

707 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the physical phenomena governing homogeneous charge compression ignition (HCCI) operation, with particular emphasis on high load conditions, is provided in this paper, with suggestions on how to inexpensively enable low emissions of all regulated emissions.

481 citations

Journal ArticleDOI
TL;DR: The most prominent characteristic of new combustion modes, such as HCCI, Stratified-charge Compression-Ignition (SCCI), and Low-Temperature Combustion (LTC), is the requirement of creating a homogenous mixture or controllable stratified mixture prior to ignition as discussed by the authors.

466 citations

Journal ArticleDOI
TL;DR: Low temperature combustion (LTC) is an advanced combustion concept for internal combustion (IC) engines, which has attracted global attention in recent years as discussed by the authors, which offers prominent benefits in terms of simultaneous reduction of both oxides of nitrogen (NO x ) and particulate matter (PM), in addition to reduction in specific fuel consumption (SFC).

320 citations

References
More filters
Book
01 Mar 2000
TL;DR: In this article, the second edition of the Second Edition of the first edition, the authors presented a simplified conversation equation for the solution of nonlinear flow equations for a C-H-O-N system.
Abstract: Preface Preface to the Second Edition Preface to the First Edition 1: Introduction 2: Combustion and Thermochemistry 3: Introduction to Mass Transfer 4: Chemical Kinetics 5: Some Important Chemical Mechanisms 6: Coupling Chemical and Thermal Analyses of Reacting Systems 7: Simplifed Conversation Equations for Reacting Flows 8: Laminar Premixed Flames 9: Laminar Diffusion Flames 10: Droplet Evaporation and Burning 11: Introduction to Turbulent Flows 12: Turbulent Premixed Flames 13: Turbulent Nonpremixed Flames 14: Burning of Solids 15: Pollutant Emissions 16: Detonations Appendix A: Selected Thermodynamic Propertiesof Gases Comprising C-H-O-N System Appendix B: Fuel Properties Appendix C: Selected Properties of Air, Nitrogen, and Oxygen Appendix D: Diffusion Coefficients and Methodology for their Estimation Appendix E: Generalized Newton's Method for the Solution of Nonlinear Equations Appendix F: Computer Codes for Equilibrium Products of Hydrocarbon-Air Combustion

2,129 citations

Journal ArticleDOI
TL;DR: In this article, the RNG κ-e turbulence model derived by Yakhot and Orszag (1986) based on the Renormalization Group theory has been modified and applied to variable-density engine flows in the present study.
Abstract: The RNG κ-e turbulence model derived by Yakhot and Orszag (1986) based on the Renormalization Group theory has been modified and applied to variable-density engine flows in the present study. The original RNG-based turbulence transport approximations were developed formally for an incompressible flow. In order to account for flow compressibility the RNG e-equation is modified and closed through an isotropic rapid distortion analysis. Computations were made of engine compressing/expanding flows and the results were compared with available experimental observations in a production diesel engine geometry. The modified RNG κ-e model was also applied to diesel spray combustion computations. It is shown that the use of the RNG model is warranted for spray combustion modeling since the ratio of the turbulent to mean-strain time scales is appreciable due to spray-generated mean flow gradients, and the model introduces a term to account for these effects. Large scale flow structures are predicted which ar...

1,200 citations

Proceedings ArticleDOI
05 Mar 2001

821 citations

Proceedings ArticleDOI
TL;DR: In this article, the authors demonstrate the multi fuel capability of a homogeneous charge compression Ignition Engine with Variable Compression Ratio (VCR) and demonstrate its multi-fuel capability.
Abstract: Demonstrating the Multi Fuel Capability of a Homogeneous Charge Compression Ignition Engine with Variable Compression Ratio

512 citations