scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Exploiting Quorum Sensing To Confuse Bacterial Pathogens

01 Mar 2013-Microbiology and Molecular Biology Reviews (American Society for Microbiology)-Vol. 77, Iss: 1, pp 73-111
TL;DR: Overall, the evidence suggests that QSI therapy may be efficacious against some, but not necessarily all, bacterial pathogens, and several failures and ongoing concerns that may steer future studies in productive directions are discussed.
Abstract: Cell-cell communication, or quorum sensing, is a widespread phenomenon in bacteria that is used to coordinate gene expression among local populations. Its use by bacterial pathogens to regulate genes that promote invasion, defense, and spread has been particularly well documented. With the ongoing emergence of antibiotic-resistant pathogens, there is a current need for development of alternative therapeutic strategies. An antivirulence approach by which quorum sensing is impeded has caught on as a viable means to manipulate bacterial processes, especially pathogenic traits that are harmful to human and animal health and agricultural productivity. The identification and development of chemical compounds and enzymes that facilitate quorum-sensing inhibition (QSI) by targeting signaling molecules, signal biogenesis, or signal detection are reviewed here. Overall, the evidence suggests that QSI therapy may be efficacious against some, but not necessarily all, bacterial pathogens, and several failures and ongoing concerns that may steer future studies in productive directions are discussed. Nevertheless, various QSI successes have rightfully perpetuated excitement surrounding new potential therapies, and this review highlights promising QSI leads in disrupting pathogenesis in both plants and animals.
Citations
More filters
Journal ArticleDOI
TL;DR: This Review examines how features of quorum sensing signal–response systems combine to control collective behaviours in Gram-negative bacteria and the implications for host–microbial associations and antibacterial therapy.
Abstract: Bacteria use quorum sensing to orchestrate gene expression programmes that underlie collective behaviours. Quorum sensing relies on the production, release, detection and group-level response to extracellular signalling molecules, which are called autoinducers. Recent work has discovered new autoinducers in Gram-negative bacteria, shown how these molecules are recognized by cognate receptors, revealed new regulatory components that are embedded in canonical signalling circuits and identified novel regulatory network designs. In this Review we examine how, together, these features of quorum sensing signal-response systems combine to control collective behaviours in Gram-negative bacteria and we discuss the implications for host-microbial associations and antibacterial therapy.

1,401 citations

Journal ArticleDOI
TL;DR: The central regulatory role of quorum sensing and signaling systems by nucleotide-based second messengers resulting in different lifestyles of P. aeruginosa is reviewed and various regulatory proteins will be discussed which form a plethora of controlling systems acting at transcriptional level for timely expression of genes enabling rapid responses to external stimuli and unfavorable conditions.
Abstract: Pseudomonas aeruginosa is an opportunistic pathogen affecting immunocompromised patients. It is known as the leading cause of morbidity and mortality in cystic fibrosis (CF) patients and as one of the leading causes of nosocomial infections. Due to a range of mechanisms for adaptation, survival and resistance to multiple classes of antibiotics, infections by P. aeruginosa strains can be life-threatening and it is emerging worldwide as public health threat. This review highlights the diversity of mechanisms by which P. aeruginosa promotes its survival and persistence in various environments and particularly at different stages of pathogenesis. We will review the importance and complexity of regulatory networks and genotypic-phenotypic variations known as adaptive radiation by which P. aeruginosa adjusts physiological processes for adaptation and survival in response to environmental cues and stresses. Accordingly, we will review the central regulatory role of quorum sensing and signaling systems by nucleotide-based second messengers resulting in different lifestyles of P. aeruginosa. Furthermore, various regulatory proteins will be discussed which form a plethora of controlling systems acting at transcriptional level for timely expression of genes enabling rapid responses to external stimuli and unfavorable conditions. Antibiotic resistance is a natural trait for P. aeruginosa and multiple mechanisms underlying different forms of antibiotic resistance will be discussed here. The importance of each mechanism in conferring resistance to various antipseudomonal antibiotics and their prevalence in clinical strains will be described. The underlying principles for acquiring resistance leading pan-drug resistant strains will be summarized. A future outlook emphasizes the need for collaborative international multidisciplinary efforts to translate current knowledge into strategies to prevent and treat P. aeruginosa infections while reducing the rate of antibiotic resistance and avoiding the spreading of resistant strains.

849 citations


Cites background from "Exploiting Quorum Sensing To Confus..."

  • ...Indeed, QS controls social behavior of bacteria by multiple interconnected signaling pathways (LaSarre and Federle, 2013)....

    [...]

Journal ArticleDOI
TL;DR: The concepts and mechanisms of microbial resilience against dietary, antibiotic or bacteriotherapy-induced perturbations and the implications for human health are discussed.
Abstract: The resilience of the microbiota can protect us from disease, but a resilient dysbiotic microbiota may also cause disease. This Opinion article discusses the concepts and mechanisms of microbial resilience against dietary, antibiotic or bacteriotherapy-induced perturbations and the implications these have for human health. The composition of the intestinal microbiota varies among individuals and throughout development, and is dependent on host and environmental factors. However, although the microbiota is constantly exposed to environmental challenges, its composition and function in an individual are stable against perturbations, as microbial communities are resilient and resistant to change. The maintenance of a beneficial microbiota requires a homeostatic equilibrium within microbial communities, and also between the microorganisms and the intestinal interface of the host. The resilience of the healthy microbiota protects us from dysbiosis-related diseases, such as inflammatory bowel disease (IBD) or metabolic disorder. By contrast, a resilient dysbiotic microbiota may cause disease. In this Opinion article, we propose that microbial resilience has a key role in health and disease. We will discuss the concepts and mechanisms of microbial resilience against dietary, antibiotic or bacteriotherapy-induced perturbations and the implications for human health.

601 citations

Journal ArticleDOI
TL;DR: The synthetic isoquinoline alkaloid virstatin, for example, inhibits the transcriptional regulator ToxT in Vibrio cholerae, preventing expression of cholera toxin and fimbriae and conferring in vivo protection against intestinal colonisation.

564 citations


Cites background from "Exploiting Quorum Sensing To Confus..."

  • ...For alkaloids such as berberine that exert both direct antibacterial and antivirulence effects, the implication is that these will, like the QS-inhibiting macrolide antibiotics [151], exert greater in vivo efficacy than their MIC evaluations suggest....

    [...]

Journal ArticleDOI
TL;DR: The use of nanoparticles still presents a challenge to therapy and much more research is needed in order to overcome this, so the current research on nanoparticles and other nanomaterials are summarized.
Abstract: Infectious diseases remain one of the leading causes of morbidity and mortality worldwide. The WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. Therefore, the antibiotic resistance crisis is one of the most pressing issues in global public health. Associated with the rise in antibiotic resistance is the lack of new antimicrobials. This has triggered initiatives worldwide to develop novel and more effective antimicrobial compounds as well as to develop novel delivery and targeting strategies. Bacteria have developed many ways by which they become resistant to antimicrobials. Among those are enzyme inactivation, decreased cell permeability, target protection, target overproduction, altered target site/enzyme, increased efflux due to over-expression of efflux pumps, among others. Other more complex phenotypes, such as biofilm formation and quorum sensing do not appear as a result of the exposure of bacteria to antibiotics although, it is known that biofilm formation can be induced by antibiotics. These phenotypes are related to tolerance to antibiotics in bacteria. Different strategies, such as the use of nanostructured materials, are being developed to overcome these and other types of resistance. Nanostructured materials can be used to convey antimicrobials, to assist in the delivery of novel drugs or ultimately, possess antimicrobial activity by themselves. Additionally, nanoparticles (e.g., metallic, organic, carbon nanotubes, etc.) may circumvent drug resistance mechanisms in bacteria and, associated with their antimicrobial potential, inhibit biofilm formation or other important processes. Other strategies, including the combined use of plant-based antimicrobials and nanoparticles to overcome toxicity issues, are also being investigated. Coupling nanoparticles and natural-based antimicrobials (or other repurposed compounds) to inhibit the activity of bacterial efflux pumps; formation of biofilms; interference of quorum sensing; and possibly plasmid curing, are just some of the strategies to combat multidrug resistant bacteria. However, the use of nanoparticles still presents a challenge to therapy and much more research is needed in order to overcome this. In this review, we will summarize the current research on nanoparticles and other nanomaterials and how these are or can be applied in the future to fight multidrug resistant bacteria.

533 citations


Cites background from "Exploiting Quorum Sensing To Confus..."

  • ...…into account, it isn’t surprising that the targeting and disruption of QS signaling systems and consequently, of the biofilm production, set the pillar for future next-generation antivirulence therapies to be developed (LaSarre and Federle, 2013; Venkatesan et al., 2015; Jakobsen et al., 2017)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: This review is an updated and expanded version of two prior reviews that were published in this journal in 1997 and 2003 and is able to identify only one de novo combinatorial compound approved as a drug in this 25 plus year time frame.
Abstract: This review is an updated and expanded version of two prior reviews that were published in this journal in 1997 and 2003. In the case of all approved agents the time frame has been extended to include the 251/2 years from 01/1981 to 06/2006 for all diseases worldwide and from 1950 (earliest so far identified) to 06/2006 for all approved antitumor drugs worldwide. We have continued to utilize our secondary subdivision of a “natural product mimic” or “NM” to join the original primary divisions. From the data presented, the utility of natural products as sources of novel structures, but not necessarily the final drug entity, is still alive and well. Thus, in the area of cancer, over the time frame from around the 1940s to date, of the 155 small molecules, 73% are other than “S” (synthetic), with 47% actually being either natural products or directly derived therefrom. In other areas, the influence of natural product structures is quite marked, with, as expected from prior information, the antiinfective area ...

5,170 citations


"Exploiting Quorum Sensing To Confus..." refers background in this paper

  • ...In recent years, more than 60% of new molecular entities introduced as agents to fight cancer have come from natural sources (231)....

    [...]

Journal ArticleDOI
TL;DR: This research presents a meta-analysis of 125 cases of central giant cell apoptosis, a type of cell death that is known as a “cell death” and which has been associated with Parkinson’s disease for more than 40 years.
Abstract: Timothy H. Dellit, Robert C. Owens, John E. McGowan, Jr., Dale N. Gerding, Robert A. Weinstein, John P. Burke, W. Charles Huskins, David L. Paterson, Neil O. Fishman, Christopher F. Carpenter, P. J. Brennan, Marianne Billeter, and Thomas M. Hooton Harborview Medical Center and the University of Washington, Seattle; Maine Medical Center, Portland; Emory University, Atlanta, Georgia; Hines Veterans Affairs Hospital and Loyola University Stritch School of Medicine, Hines, and Stroger (Cook County) Hospital and Rush University Medical Center, Chicago, Illinois; University of Utah, Salt Lake City; Mayo Clinic College of Medicine, Rochester, Minnesota; University of Pittsburgh Medical Center, Pittsburgh, and University of Pennsylvania, Philadelphia, Pennsylvania; William Beaumont Hospital, Royal Oak, Michigan; Ochsner Health System, New Orleans, Louisiana; and University of Miami, Miami, Florida

2,831 citations

Journal ArticleDOI
07 Sep 2007-Cell
TL;DR: The results suggest that all three major classes of bactericidal drugs can be potentiated by targeting bacterial systems that remediate hydroxyl radical damage, including proteins involved in triggering the DNA damage response, e.g., RecA.

2,420 citations


"Exploiting Quorum Sensing To Confus..." refers background in this paper

  • ...There is growing awareness that many antibiotics affect multiple modes of bacterial physiology by means that are beyond direct inhibition of currently understood primary targets of each antibiotic class (306), and evidence suggests that QS is one alternative target of antibiotics in some species....

    [...]

Journal ArticleDOI
TL;DR: A Swedish patient of Indian origin traveled to New Delhi, India, and acquired a urinary tract infection caused by a carbapenem-resistant Klebsiella pneumoniae strain that typed to the sequence type 14 complex, showing broad resistance carried on these plasmids.
Abstract: A Swedish patient of Indian origin traveled to New Delhi, India, and acquired a urinary tract infection caused by a carbapenem-resistant Klebsiella pneumoniae strain that typed to the sequence type 14 complex. The isolate, Klebsiella pneumoniae 05-506, was shown to possess a metallo-β-lactamase (MBL) but was negative for previously known MBL genes. Gene libraries and amplification of class 1 integrons revealed three resistance-conferring regions; the first contained blaCMY-4 flanked by ISEcP1 and blc. The second region of 4.8 kb contained a complex class 1 integron with the gene cassettes arr-2, a new erythromycin esterase gene; ereC; aadA1; and cmlA7. An intact ISCR1 element was shown to be downstream from the qac/sul genes. The third region consisted of a new MBL gene, designated blaNDM-1, flanked on one side by K. pneumoniae DNA and a truncated IS26 element on its other side. The last two regions lie adjacent to one another, and all three regions are found on a 180-kb region that is easily transferable to recipient strains and that confers resistance to all antibiotics except fluoroquinolones and colistin. NDM-1 shares very little identity with other MBLs, with the most similar MBLs being VIM-1/VIM-2, with which it has only 32.4% identity. As well as possessing unique residues near the active site, NDM-1 also has an additional insert between positions 162 and 166 not present in other MBLs. NDM-1 has a molecular mass of 28 kDa, is monomeric, and can hydrolyze all β-lactams except aztreonam. Compared to VIM-2, NDM-1 displays tighter binding to most cephalosporins, in particular, cefuroxime, cefotaxime, and cephalothin (cefalotin), and also to the penicillins. NDM-1 does not bind to the carbapenems as tightly as IMP-1 or VIM-2 and turns over the carbapenems at a rate similar to that of VIM-2. In addition to K. pneumoniae 05-506, blaNDM-1 was found on a 140-kb plasmid in an Escherichia coli strain isolated from the patient's feces, inferring the possibility of in vivo conjugation. The broad resistance carried on these plasmids is a further worrying development for India, which already has high levels of antibiotic resistance.

2,144 citations

Journal ArticleDOI
TL;DR: The ability of CV026 to respond to a series of synthetic AHL and N-acylhomocysteine thiolactone (AHT) analogues is explored, greatly extending the ability to detect a wide spectrum of AHL signal molecules.
Abstract: Quorum sensing relies upon the interaction of a diffusible signal molecule with a transcriptional activator protein to couple gene expression with cell population density. In Gram-negative bacteria, such signal molecules are usually N-acylhomoserine lactones (AHLs) which differ in the structure of their N-acyl side chains. Chromobacterium violaceum, a Gram-negative bacterium commonly found in soil and water, produces the characteristic purple pigmen violacein. Previously the authors described a violacein-negative, mini-Tn5 mutant of C. violaceum (CV026) in which pigment production can be restored by incubation with supernatants from the wild-type strain. To develop this mutant as a general biosensor for AHLs, the natural C. violaceum AHL molecule was first chemically characterized. By using solvent extraction, HPLC and mass spectrometry, a single AHL, N-hexanoyl-L-homoserine lactone (HHL), was identified in wild-type C. violaceum culture supernatants which was absent from CV026. Since the production of violacein constitutes a simple assay for the detection of AHLs, we explored the ability of CV026 to respond to a series of synthetic AHL and N-acylhomocysteine thiolactone (AHT) analogues. In CV026, violacein is inducible by ail the AHL and AHT compounds evaluated with N-acyl side chains from C4 to C8 in length, with varying degrees of sensitivity. Although AHL compounds with N-acyl side chains from C10 to C14 are unable to induce violacein production, if an activating AHL (e.g. HHL) is incorporated into the agar, these long-chain AHLs can be detected by their ability to inhibit violacein production. The versatility of CV026 in facilitating detection of AHL mixtures extracted from culture supernatants and separated by thin-layer chromatography is also demonstrated. These simple bioassays employing CV026 thus greatly extend the ability to detect a wide spectrum of AHL signa molecules.

1,617 citations