scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Exploring extra-cellular proteins in methicillin susceptible and methicillin resistant Staphylococcus aureus by liquid chromatography-tandem mass spectrometry.

01 Apr 2014-World Journal of Microbiology & Biotechnology (Springer Netherlands)-Vol. 30, Iss: 4, pp 1269-1283
TL;DR: It is found that the shared extracellular products are more abundant in MRSA than MSSA that supporting the high invasiveness of MRSA over MSSA in pathogenesis, and characteristic determinants for MRSA were identified.
Abstract: Staphylococcus aureus (S. aureus) strains cause several diseases in humans from minor skin infections to severe lethal infections. To explore the virulence determinants of this important microorganism, two clinical isolates of methicillin susceptible S. aureus (MSSA) and methicillin resistant S. aureus (MRSA) were subjected to proteomic analysis of their extracellular products using liquid chromatography–tandem mass spectrometry. The numbers of proteins identified in MSSA and MRSA extracellular products were 168 and 261; respectively, from them 117 were shared, while 144 proteins were unique to MRSA. The shared proteins, having a higher protein score with increased number of peptide matches in MRSA over MSSA, reflect the relatively active secretory state of MRSA rather than biased analytical variances. Characteristic determinants for MRSA were identified; mostly found to play a role in the virulence. We conclude that MRSA produces distinct proteins considered as its virulence determinants and we found that the shared extracellular products are more abundant in MRSA than MSSA that supporting the high invasiveness of MRSA over MSSA in pathogenesis.
Citations
More filters
Journal ArticleDOI
TL;DR: Proteomics, peptidomics and metabolomics are discussed how these techniques can be used for discovering biomarkers for pathogenicity of foodborne pathogens, determining the mechanisms by which they act, and studying their resistance upon inactivation in food of animal and plant origin.

116 citations

Journal ArticleDOI
TL;DR: In vitro data shows the adaptation and cross-adaptation of oral pathogens to antiseptics and antibiotics, related to changes in cell surface hydrophobicity and in expression of proteins involved in membrane transport, virulence, oxidative stress protection and metabolism.
Abstract: There is evidence that pathogenic bacteria can adapt to antiseptics upon repeated exposure. More alarming is the concomitant increase in antibiotic resistance that has been described for some pathogens. Unfortunately, effects of adaptation and cross-adaptation are hardly known for oral pathogens, which are very frequently exposed to antiseptics. Therefore, this study aimed to determine the in vitro increase in minimum inhibitory concentrations (MICs) in oral pathogens after repeated exposure to chlorhexidine or cetylpyridinium chloride, to examine if (cross-)adaptation to antiseptics/antibiotics occurs, if (cross-)adaptation is reversible and what the potential underlying mechanisms are. When the pathogens were exposed to antiseptics, their MICs significantly increased. This increase was in general at least partially conserved after regrowth without antiseptics. Some of the adapted species also showed cross-adaptation, as shown by increased MICs of antibiotics and the other antiseptic. In most antiseptic-adapted bacteria, cell-surface hydrophobicity was increased and mass-spectrometry analysis revealed changes in expression of proteins involved in a wide range of functional domains. These in vitro data shows the adaptation and cross-adaptation of oral pathogens to antiseptics and antibiotics. This was related to changes in cell surface hydrophobicity and in expression of proteins involved in membrane transport, virulence, oxidative stress protection and metabolism.

43 citations

Journal ArticleDOI
TL;DR: The latest applications of gel-based and gel-free proteomic techniques in the identification of the virulence factors within S. aureus secretome and surfacome are overviewed.
Abstract: Staphylococcus aureus is a widespread, opportunistic pathogen that causes community and hospital acquired infections. Its high pathogenicity is driven by multifactorial and complex mechanisms determined by the ability of the bacterium to express a wide variety of virulence factors. The proteome secreted into extracellular milieu is a rich reservoir of such factors which include mainly nonenzymatic toxins and enzymes. Simultaneously, membrane proteins, membrane-cell wall interface proteins and cell wall-associated proteins also strongly influence staphylococcal virulence. Proteomics shows a great potential in exploring the role of the extracellular proteome in cell physiology, including the pathogenic potential of particular strains of staphylococci. In turn, understanding the bacterial physiology including the interconnections of particular factors within the extracellular proteomes is a key to the development of the ever needed, novel antibacterial strategies. Here, we briefly overview the latest applications of gel-based and gel-free proteomic techniques in the identification of the virulence factors within S. aureus secretome and surfacome. Such studies are of utmost importance in understanding the host-pathogen interactions, analysis of the role of staphylococcal regulatory systems and also the detection of posttranslational modifications emerging as important modifiers of the infection process.

32 citations


Cites background from "Exploring extra-cellular proteins i..."

  • ...Of 144 proteins unique to MRSA at least some are most probably virulence determinants of this strain (Enany et al., 2014)....

    [...]

Journal ArticleDOI
TL;DR: Proteomic data confirm that antibiotic resistance requires the fitness cost and the bacterial envelope is an important factor in antibiotic resistance.
Abstract: The increase of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) poses a worldwide and serious health threat. Although new antibiotics, such as daptomycin and linezolid, have been developed for the treatment of infections of Gram-positive pathogens, the emergence of daptomycin-resistant and linezolid-resistant strains during therapy has now increased clinical treatment failures. In the past few years, studies using quantitative proteomic methods have provided a considerable progress in understanding antibiotic resistance mechanisms. In this review, to understand the resistance mechanisms to four clinically important antibiotics (methicillin, vancomycin, linezolid, and daptomycin) used in the treatment of Gram-positive pathogens, we summarize recent advances in studies on resistance mechanisms using quantitative proteomic methods, and also examine proteins playing an important role in the bacterial mechanisms of resistance to the four antibiotics. Proteomic researches can identify proteins whose expression levels are changed in the resistance mechanism to only one antibiotic, such as LiaH in daptomycin resistance and PrsA in vancomycin resistance, and many proteins simultaneously involved in resistance mechanisms to various antibiotics. Most of resistance-related proteins, which are simultaneously associated with resistance mechanisms to several antibiotics, play important roles in regulating bacterial envelope biogenesis, or compensating for the fitness cost of antibiotic resistance. Therefore, proteomic data confirm that antibiotic resistance requires the fitness cost and the bacterial envelope is an important factor in antibiotic resistance.

31 citations


Cites background from "Exploring extra-cellular proteins i..."

  • ...Two studies exploring proteomic profiles of methicillinsusceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) in the absence of methicillin were reported (Cordwell et al., 2002; Enany et al., 2014)....

    [...]

  • ...Another report explored proteome profiles of extracellular proteins in methicillin-sensitive and methicillin-resistant S. aureus (Enany et al., 2014)....

    [...]

  • ...…(LdhA) (2-fold), pyruvate dehydrogenase E1 component beta subunit (PdhB) (2- fold), superoxide dismutase (SodA) (2-fold), triacylglycerol lipase precursor (LipA) (2-fold), triosephosphate isomerase (TpiA) (2-fold), and universal stress protein family protein (7-fold) (Enany et al., 2014)....

    [...]

Journal ArticleDOI
TL;DR: Studying the proteomes of different subcellular compartments of S. aureus should improve the understanding of this pathogen, a microorganism with several mechanisms of resistance and pathogenicity, and provide valuable data for bioinformatics databases.
Abstract: For many years Staphylococcus aureus has been recognized as an important human pathogen. In this study, the surfacome and exoproteome of a clinical sample of MRSA was analyzed. The C2355 strain, previously typed as ST398 and spa-t011 and showing a phenotype of multiresistance to antibiotics, has several resistance genes. Using shotgun proteomics and bioinformatics tools, 236 proteins were identified in the surfaceome and 99 proteins in the exoproteome. Although many of these proteins are related to basic cell functions, some are related to virulence and pathogenicity like catalase and isdA, main actors in S. aureus infection, and others are related to antibiotic action or eventually resistance like penicillin binding protein, a cell-wall protein. Studying the proteomes of different subcellular compartments should improve our understanding of this pathogen, a microorganism with several mechanisms of resistance and pathogenicity, and provide valuable data for bioinformatics databases.

17 citations


Cites background from "Exploring extra-cellular proteins i..."

  • ...dent secretion pathways, which SecretomeP would predict to be secreted via the classical pathway [20,21]....

    [...]

References
More filters
Journal ArticleDOI
15 Aug 1970-Nature
TL;DR: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products.
Abstract: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products. Four major components of the head are cleaved during the process of assembly, apparently after the precursor proteins have assembled into some large intermediate structure.

232,912 citations

Journal Article
01 Jan 1970-Nature
TL;DR: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products as mentioned in this paper.
Abstract: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products. Four major components of the head are cleaved during the process of assembly, apparently after the precursor proteins have assembled into some large intermediate structure.

203,017 citations

Journal ArticleDOI
TL;DR: Silver staining allows a substantial shortening of sample preparation time and may, therefore, be preferable over Coomassie staining, and this work removes a major obstacle to the low-level sequence analysis of proteins separated on polyacrylamide gels.
Abstract: Proteins from silver-stained gels can be digested enzymatically and the resulting peptides analyzed and sequenced by mass spectrometry. Standard proteins yield the same peptide maps when extracted from Coomassie- and silver-stained gels, as judged by electrospray and MALDI mass spectrometry. The low nanogram range can be reached by the protocols described here, and the method is robust. A silver-stained one-dimensional gel of a fraction from yeast proteins was analyzed by nanoelectrospray tandem mass spectrometry. In the sequencing, more than 1000 amino acids were covered, resulting in no evidence of chemical modifications due to the silver staining procedure. Silver staining allows a substantial shortening of sample preparation time and may, therefore, be preferable over Coomassie staining. This work removes a major obstacle to the low-level sequence analysis of proteins separated on polyacrylamide gels.

8,437 citations


"Exploring extra-cellular proteins i..." refers methods in this paper

  • ...The slices were reduced with 10 mM dithiothreitol, alkylated with 55 mM iodoacetamide, and digested with 180 ng of trypsin (Shevchenko et al. 1996; Magdeldin et al. 2010a)....

    [...]

Journal ArticleDOI
TL;DR: In an elegant series of clinical observations and laboratory studies published in 1880 and 1882, Ogston described staphylococcal disease and its role in sepsis and abscess formation.
Abstract: Micrococcus, which, when limited in its extent and activity, causes acute suppurative inflammation (phlegmon), produces, when more extensive and intense in its action on the human system, the most virulent forms of septicaemia and pyaemia.1 In an elegant series of clinical observations and laboratory studies published in 1880 and 1882, Ogston described staphylococcal disease and its role in sepsis and abscess formation.1,2 More than 100 years later, Staphylococcus aureus remains a versatile and dangerous pathogen in humans. The frequencies of both community-acquired and hospital-acquired staphylococcal infections have increased steadily, with little change in overall mortality. Treatment of these infections . . .

5,550 citations


"Exploring extra-cellular proteins i..." refers background in this paper

  • ...Staphylococcus aureus (S. aureus) is a highly successful human opportunistic pathogen which causes severe infections in cardiovascular, osteoarticular, and respiratory systems likewise in the skin and soft tissues (Lowy 1998; Gorwitz 2008)....

    [...]

  • ...aureus) is a highly successful human opportunistic pathogen which causes severe infections in cardiovascular, osteoarticular, and respiratory systems likewise in the skin and soft tissues (Lowy 1998; Gorwitz 2008)....

    [...]

Journal ArticleDOI
TL;DR: The update to version 9.1 of STRING is described, introducing several improvements, including extending the automated mining of scientific texts for interaction information, to now also include full-text articles, and providing users with statistical information on any functional enrichment observed in their networks.
Abstract: Complete knowledge of all direct and indirect interactions between proteins in a given cell would represent an important milestone towards a comprehensive description of cellular mechanisms and functions. Although this goal is still elusive, considerable progress has been made-particularly for certain model organisms and functional systems. Currently, protein interactions and associations are annotated at various levels of detail in online resources, ranging from raw data repositories to highly formalized pathway databases. For many applications, a global view of all the available interaction data is desirable, including lower-quality data and/or computational predictions. The STRING database (http://string-db.org/) aims to provide such a global perspective for as many organisms as feasible. Known and predicted associations are scored and integrated, resulting in comprehensive protein networks covering >1100 organisms. Here, we describe the update to version 9.1 of STRING, introducing several improvements: (i) we extend the automated mining of scientific texts for interaction information, to now also include full-text articles; (ii) we entirely re-designed the algorithm for transferring interactions from one model organism to the other; and (iii) we provide users with statistical information on any functional enrichment observed in their networks.

3,900 citations


"Exploring extra-cellular proteins i..." refers methods in this paper

  • ...Protein was quantified by the modified Lowry’s method (Fux et al. 2005)....

    [...]