scispace - formally typeset
Search or ask a question
Journal Article

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

TL;DR: This article introduced a unified framework that converts all text-based language problems into a text-to-text format and compared pre-training objectives, architectures, unlabeled data sets, transfer approaches, and other factors on dozens of language understanding tasks.
Abstract: Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts all text-based language problems into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled data sets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new ``Colossal Clean Crawled Corpus'', we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our data set, pre-trained models, and code.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
01 Jan 2020
TL;DR: The first large-scale Chinese Language Understanding Evaluation (CLUE) benchmark is introduced, an open-ended, community-driven project that brings together 9 tasks spanning several well-established single-sentence/sentence-pair classification tasks, as well as machine reading comprehension, all on original Chinese text.
Abstract: The advent of natural language understanding (NLU) benchmarks for English, such as GLUE and SuperGLUE allows new NLU models to be evaluated across a diverse set of tasks. These comprehensive benchmarks have facilitated a broad range of research and applications in natural language processing (NLP). The problem, however, is that most such benchmarks are limited to English, which has made it difficult to replicate many of the successes in English NLU for other languages. To help remedy this issue, we introduce the first large-scale Chinese Language Understanding Evaluation (CLUE) benchmark. CLUE is an open-ended, community-driven project that brings together 9 tasks spanning several well-established single-sentence/sentence-pair classification tasks, as well as machine reading comprehension, all on original Chinese text. To establish results on these tasks, we report scores using an exhaustive set of current state-of-the-art pre-trained Chinese models (9 in total). We also introduce a number of supplementary datasets and additional tools to help facilitate further progress on Chinese NLU. Our benchmark is released at https://www.cluebenchmarks.com

190 citations

Journal ArticleDOI
TL;DR: The authors proposed a unified model for knowledge embedding and pre-trained LanguagE representation (KEPLER), which can not only better integrate factual knowledge into PLMs but also produce effective text-enhanced KE with the strong PLMs.
Abstract: Pre-trained language representation models (PLMs) cannot well capture factual knowledge from text. In contrast, knowledge embedding (KE) methods can effectively represent the relational facts in knowledge graphs (KGs) with informative entity embeddings, but conventional KE models cannot take full advantage of the abundant textual information. In this paper, we propose a unified model for Knowledge Embedding and Pre-trained LanguagE Representation (KEPLER), which can not only better integrate factual knowledge into PLMs but also produce effective text-enhanced KE with the strong PLMs. In KEPLER, we encode textual entity descriptions with a PLM as their embeddings, and then jointly optimize the KE and language modeling objectives. Experimental results show that KEPLER achieves state-of-the-art performances on various NLP tasks, and also works remarkably well as an inductive KE model on KG link prediction. Furthermore, for pre-training and evaluating KEPLER, we construct Wikidata5M, a large-scale KG dataset with aligned entity descriptions, and benchmark state-of-the-art KE methods on it. It shall serve as a new KE benchmark and facilitate the research on large KG, inductive KE, and KG with text. The source code can be obtained from https://github.com/THU-KEG/KEPLER .

179 citations

Posted Content
TL;DR: In this article, a survey of recent developments in deep learning based object detectors is presented along with some of the prominent backbone architectures used in recognition tasks and compared the performances of these architectures on multiple metrics.
Abstract: Object Detection is the task of classification and localization of objects in an image or video. It has gained prominence in recent years due to its widespread applications. This article surveys recent developments in deep learning based object detectors. Concise overview of benchmark datasets and evaluation metrics used in detection is also provided along with some of the prominent backbone architectures used in recognition tasks. It also covers contemporary lightweight classification models used on edge devices. Lastly, we compare the performances of these architectures on multiple metrics.

174 citations

Proceedings ArticleDOI
01 Jul 2020
TL;DR: It is observed that intermediate tasks requiring high-level inference and reasoning abilities tend to work best and that target task performance is strongly correlated with higher-level abilities such as coreference resolution, but it is failed to observe more granular correlations between probing and target taskperformance.
Abstract: While pretrained models such as BERT have shown large gains across natural language understanding tasks, their performance can be improved by further training the model on a data-rich intermediate task, before fine-tuning it on a target task. However, it is still poorly understood when and why intermediate-task training is beneficial for a given target task. To investigate this, we perform a large-scale study on the pretrained RoBERTa model with 110 intermediate-target task combinations. We further evaluate all trained models with 25 probing tasks meant to reveal the specific skills that drive transfer. We observe that intermediate tasks requiring high-level inference and reasoning abilities tend to work best. We also observe that target task performance is strongly correlated with higher-level abilities such as coreference resolution. However, we fail to observe more granular correlations between probing and target task performance, highlighting the need for further work on broad-coverage probing benchmarks. We also observe evidence that the forgetting of knowledge learned during pretraining may limit our analysis, highlighting the need for further work on transfer learning methods in these settings.

173 citations

Book ChapterDOI
20 Oct 2020
TL;DR: This work trains BERT (Bidirectional Encoder Representations from Transformers) models for Brazilian Portuguese, which is nickname BERTimbau, and evaluates their models on three downstream NLP tasks: sentence textual similarity, recognizing textual entailment, and named entity recognition.
Abstract: Recent advances in language representation using neural networks have made it viable to transfer the learned internal states of large pretrained language models (LMs) to downstream natural language processing (NLP) tasks. This transfer learning approach improves the overall performance on many tasks and is highly beneficial when labeled data is scarce, making pretrained LMs valuable resources specially for languages with few annotated training examples. In this work, we train BERT (Bidirectional Encoder Representations from Transformers) models for Brazilian Portuguese, which we nickname BERTimbau. We evaluate our models on three downstream NLP tasks: sentence textual similarity, recognizing textual entailment, and named entity recognition. Our models improve the state-of-the-art in all of these tasks, outperforming Multilingual BERT and confirming the effectiveness of large pretrained LMs for Portuguese. We release our models to the community hoping to provide strong baselines for future NLP research: https://github.com/neuralmind-ai/portuguese-bert.

169 citations

Trending Questions (1)
What are the limitations of transfer learning with a unified text-to-text transformer?

The paper does not mention the limitations of transfer learning with a unified text-to-text transformer.